Toggle navigation
Images.Elk.pl
Image2012
Image2012
lim
a
n
= + co => lim
b
n
=+<^>
Wyszukiwarka
Podobne podstrony:
Image2013 = — co lim bn = - co => lim an
image1667 lim n —>lim 1 a = O => — co n —> co an =
image1668 lim n —>lim 1 a = O => — co n —> co an =
Image1970 lim an = + co .
Image2014 1. lim np = + co (p>0) 2. lim np=0 (p < 0)
Image2018 3 3 lim — = 0 (a dowolne) 10. lim — = + co (a > 1, p > 0) n I 
Image2022 • lim 3 r? +1 n + 2 3 ns +1 3n2 +1 n _ + co = lim n = lim + co + 0 + co n +
Image2033 lim lim (j2n + 5 - 42 n + 3) = [+ co - (+ co)]■/2n + 5 - 42 n + 3j,j2n + 5 + 42 n + 3 j 42
Image2309 lim f(x) = -co lub lim f(x) = <*> x-*a~ x^>a~
Image2336 X lim - x^olnx = 0. lim X X = —co x-»r lim -x^i+ lnx X = co lim — xh>®
Image2952x • lim n2 +2-n + co -lim ( I- — r i- — + 2 - n In1 + 2 + n L __J L_ J r r?—
scan5 Ad c czyliAd d czyli lim un - lim (a„ • bn) = lim^ an ■ lim bn lim un = 6 lim v„ = lim (an: bn
008 . IERDZENIE Jeśli lim an — a, gdzie a G R oraz lim bu — oo (lub lim bn = —oo), to n—>oo
Lemat 2.2 Niech (Vn 6 A/*) O < afl < fcfl oraz lim bn = 0. Wtedy lim an = 0. n—oo
więcej podobnych podstron