Dodatek
Dodatek
DP=FXP(BL)
'S ALFA(U,V)=ALF/DP 12 CONTTNUE DO 18 W=2,M DO 19 U=2,M P=U+ (M-T) • Dł-2] 19 A(P)=ALFA(U,V)
18 CONTINUE RETURN END
SUBROUTTNE WSPÓŁCZYNNIKI XY JNTEGER P.li.W REAL LL
DIWENSION BETA (10, 10) ,BD[4 0)
COMMON /BI OK 1 /L. J, PT, EY /BL0K3 /C(3,12),T(7,37)/BL0K4 / DD( 3,3 7)/BLOK5/ 1A (100),B (101 M=J-i
cl=c :i,j)-cn,i)
DO 1 U=2,M CJ=C| 1, J) -C (1 ,1!)
B(U)=0,0 W=J,+J-1 3 DO 2 1=1,W K=K+1
IF(C {1,1 J.LT.TI1 ,K ).AND.T|1 .K l.LE.C (1, J) ) 00 TO 4
GO TO 3
A LL=T (1 ,K)-T (1,T)
TE(T(5,Tl*T(A,K) )5,0,0 CDrT (5, T )+T (4 ,K )
S=LL/2 CD
TE(ABS(T(5,T)1-ABS(T(1,K ) )) 6,0,0 XX=LL/3 * ( CER-T (4 ,K)j/CD GO TO 7
6 XX=LL-LL/3*(CD+-T( 5,II l /CD
7 CONTINUE
5 IF|T(5,T)) 8,0,0 CD=T(5,I)-T(4,K]
S=LL/7»CD
XX=LL/3»(CD-T(5,K) )/CD GO TO 9
8 CD=T (4 ,K }-T (5,1)
S=LL/2*CD
XX=LL-LL/3 9 (CD-T ( 5,111 /CI
9 CONTINUE
CT=T (1,1) -C (1,1)
IF( T (1 ,K) -C (i ,U)) 0,0,10
FY=(CT+XX)«CJ/CL
GO. TO 11
10 FY=(C(1 ,II |-C (1,1 ) ]/CL*( CJ-CT-XX'
11 DDS=(DD(7,K)+DD{7,1))/2 DL=4 *A.LOG( DDE)
DP=EXP(DL)
BD(I)=S*FY»64.0/(EY*?I»D?)
2 B(II) = -B(U)-BD(TJ 1 CONTINUE DO 12 TJ=2, M
0A=C(1,W|-C(1,1|
cb=c (i, ji -c (i ,vn
S=CA*CB/2 XX=(2*CA+CB)/3 TF(XX-CA) 0,0,13 PY=OB*XX/CL GO TO 14
13 ?Y=XX-CA
14 BET=S»PY*6a.0/(EY»PT)
P=J+1
DO 15 rJ=2, M DO 16 K=1,P
TP(DD(1,K -C(1,1I|) 0,17.0
16 CONTINUE
17 DL=4«ALOG(DD(2,K|)
DP=EXP(DL)
15 BETA (U, W )=BET/DP 12 CONTINUE
DO 18 V/=? , M DO 19 U=2., M P=U+(M-1)«(W-2)
19 A (P )=BETA (TI,V )
18 CONTINUE PETURN END
LIBRARY
PFAD FPOM (MT . — .PUCE) FINTSH