5543593308489960093403697 n

5543593308489960093403697 n



91

90

91

90

Ro/wią/amc

(a)

Stąd prędkość


>


16


9

A2


4    36

7+TV‘

Rugując z kolei niewiadomą A mamy


16


4 +


36


skąd

oraz


smx

corx’


1 14    liniowa .


I"®* pray c,y„, s,*    «>/•■■ >•(«+

y"“a'“+H°x+k>‘,'-'»0'X+}b.


<:«). Otóż


zatem

czyli


3y"+2/+7y5,

3>"+2y'+7y=cosx.


czyli y* =| ;


Siąd a więc


Równani* «***»»•

u. Z znlotenia. Jc «ch j«< harmomc/ny mamy Xmx(t)~As\n(<»t +?)’•

_    ■ , orze/ / czas w którym punkt pr/y.imic położenie *-2cm, a przez r2 czas,

pi—.'-3«. * —«    -™* ■«*

"n3'i    2-/sm(m<,+r),    3-4sin(<»l2+r>.

6=złtocos(wr, +y)»    4=/tcocos(ml2+y).

Rugując z układu (t i (2 znajdujemy

o 16

■ 1.

2 --2 ’

CD    £0

ca =2-l/$=2 Hz (ł)

„ 2rc 2k T =— =—- =- s.

fi) 2

146. Rozwiązać równania:

„a) y"+5y'+6y=xeJx; b) 3y"+2y'+7y = 5+co$x; c) y"-8y' + 16y «3e*x; Nd) y"+2/+Sy=-e-*cos2x; vc) y"-3/+2y=sine-x; f) y"'+2y''-y'-2y=x:+2e5x;

g) y<*>+2y"-ł-y=sinx; ^h) y'"+y' =

Rozwiązanie, a) Aby znaleić całkę ogólną równania

(ł)    y"+5y'4-6y=xe3',

JCdn0r0d"t80; '•+*'+*-0 oraz dewoto, * Z przykładu 143a mamy

_ >’o=,C,e~2j‘ + ę2e-3*

C) 1/s-l Hz (jeden hrre).

Całkę y* znajdziemy metoda _    .    ^ *'I*,c*yonik«*

+ 6) eix(xr~ t-o _ , ‘ UK,4 Przewidywani, u-^    '    * 3*,-P°n.cw,żlic/b | *n,a Mianowicie

■W,r£^=rr,r.TO

K<J4/ "» ^iać równanie

X>ax+30b+UaaX'

Przyrównując współczynniki nr,, . «

m nwc>- « -*    ‘ *-*•

.. v    y~C'r:'+c><~ix+mWx-i\Ui'.

b) Kor/ys,;,^c z przykładu 143c. mamy

>0JC (ciCpsf N/ 5x+C2 sio f s/5x).

l4.3).aS,ęPn,C ,1KUHl' Pr2CW,dyWan,a Znajduj<m>' ca,ki szczególne y* i równań (por.

(b.)

(ba)

Kolejno mamy

yi = A (A — jest wielomianem stopnia zerowego);

"0.    7/1-5.

y*=Acosx + 5sinx (k-O*-j i ł> = l*jv'S. zatem p-0 (patrz 2'p). >•*'= -/lsinx+Bcosx, y*" **-A cos x - 5sin x.

—3/1 cos x - 3# sin ,v - 2/t sin .V-f 28 cos x + 4 cos x+sin x=cos -f 0 ■ sin x, -2/1+217-1,    -24-25=0.

czyli/f = -ii^ = |.

Stosując wzór (7). otrzymujemy całkę ogólną równania 3y"+2/+7/-5+cosx

w postaci    _    .    . , .

y.e-^Cj coSjV/5x + C;sin j v'5x)+: -J(cosx-anx). c) Rozwiązujemy najpierw równanie jednorodne równania

(c)    y'-8y' + l6y~3f4'-



Wyszukiwarka

Podobne podstrony:
skanuj0150 (11) 280 B. Cieślar Punkt 2 w az = 75 MPa; tan 2a=-^-o2-oy a = 22,5°; om = 90,53 MPa; Gy
41493 skanuj0150 (11) 280 B. Cieślar Punkt 2 w az = 75 MPa; tan 2a=-^-o2-oy a = 22,5°; om = 90,53 MP
?J A    * Wlrttf p<j«nyilu i*c*oiyxicjjn<90 M.<ro;ort PowtfPorrt ■
Zapis i Podstawy Konstrukcji. Tolerancje i Pasowania 19 - oo 60 90 Ro 0J2/ Jeżeli
Scan5 Str. 90 25 cm okularów Krótsze kawałki sznurka każdego koloru mają długość 25 cmŁańcuszek do
Magazyn 591 PUSTELNIA W GÓRACH 85 znikł z jej twarzy, skoro za nim zobaczyła Pawła. —   
Magazyn 591 CZUKCZE 287 Wieje z ziemi na morze, Więc wyruszaj, nieboże! Psy zaprzęgaj bez zwłoki,
Parkowy 23 261,37 zł 457,90 zł 0,0948 868,18 Zł 16 301,27 zł 33 243,61 zł 1,4 ha 2.0496 18
parametrów geofizycznych [90] Parametrami tymi mogą być prędkość fal sejsmicznych Vpi elektryczna
DSC04049 Ciśnienie probltm ro/wią/ani# l IlUlilllOUII Spti v fkvui biukma imcsn n intokiicli j
kontakt2 LEMI ul. Wycieczkowa 7a 91-614, Łódź Poland pn. - pt. 8:00 - 16:00 infolinia: 801
REIDER PART 290 350 Chapter 9 Lumbar Spine Figurę 9-16, cont d. D, L4. E, L5. F, SI. G, S2. L4 Nerv
zgodnie z liniami grzbietów fal, następnie skręcamy o 90°, w kierunku z którego wieje wiatr). Prędko
skanuj0002 ^~>r> ro, ah    *~£4Z ij** JQ = Cl ±2 <f 5 3S 7r - V £ = Q -<
anatomia kolos 35 15) Z czego składa się staw kolanowy? jJ^ c    P m f ,OC)Ul ^W^ P
Image018 „Czarna pedagogika"    91 90 Wychowanie jako zwalczanie zdrowych instyn

więcej podobnych podstron