88
88
(4.1)
K(jo>) = -?- = |K|exp(j<p)
U1
a drugi czwórnikiem sprzężenia zwrotnego o transmitancji
(4.2)
P(jo) = — = |P|exp(jv|/)
U2 _ Jeżeli założymy, że obydwa czwórniki są czwórnikami liniowymi i że nie obciążają się wzajemnie, to wypadkową transmitancję układu uzyskamy w postaci:
Kf(jco) =
(4.3)
K(jco)
1-p(jco) K(jto) a warunkiem generacji będzie równanie zespolone
Warunek generacji można przedstawić w postaci
K(jco)p(jco) = |K| • |p| • exp[j(cp + y)] = 1 (4.5)
lub można go rozłożyć na dwa warunki, które musza być równocześnie spełnione:
- warunek amplitudy
z którego wynikają wartości współczynników wzmocnienia |K| i sprzężenia zwrotnego |P| konieczne do uzyskania drgań układu:
- warunek fazy
cp + ij/ = 2rcn n = 0; 1;(4.7) ,
który powinien być spełniony dla częstotliwości drgań generatora. Należy pamiętać, że powyższe warunki generacji obowiązują dla układów, w których czwórniki wzmac- I niacza i sprzężenia zwrotnego nie obciążają się wzajemnie. Założenie to nie jest jednak spełnione dla większości generatorów tranzystorowych.
Ogólny warunek generacji (nie wymagający założenia o nieobciążaniu się czwór- i ników) wynika z macierzowej metody analizy układów elektronicznych. Ponieważ mianownik transmitancji napięciowej układu elektronicznego jest wyznacznikiem A macierzy admitancyjnej Y całego układu (a więc wzmacniacza z obwodem sprzężenia zwrotnego i obciążeniem RL generatora), to ogólnym warunkiem powstania drgań jest zależność:
powered by
i
Admitancje elementów układu mają wartości zespolone, a zatem a ma-
cierzy admitancyjnej Y ma część rzeczywistą i urojoną
A = A(u) + jB(co) (4.9)
W tej sytuacji ogólny warunek generacji (4.8) można przedstawić w postaci dwóch warunków:
. warunek amplitudy
A(co) = 0
(4.9a)
warunek fazy
Po obliczeniu częstotliwości, dla której spełnione jest równanie (4.9b) (będzie to częstotliwość drgań układu) i podstawieniu obliczonej wartości częstotliwości f0 do równania (4.9a) uzyska się zależność między parametrami elementów układu, po spełnieniu której układ będzie generował drgania niegasnące.
4.2.2. Generatory LC
Generatory LC to generatory, w których o częstotliwości drgań decyduje obwód rezonansowy złożony z indukcyjności L i pojemności C. Generatory te dostarczają napięć sinusoidalnie zmiennych o częstotliwościach od kilkudziesięciu kHz do kilkuset MHz przy mocach wyjściowych od ułamków wata (generatory napięcia) do 1 MW (generatory mocy).Generatory LC (o częstotliwości nie stabilizowanej za pomocą rezonatora kwarcowego) w wyniku zmian temperatury, napięć zasilających i obciążenia wykazują niestałość częstotliwości rzędu 10‘3.
Podstawowym układem generatora LC jest generator Meissnera, w którym wykorzystuje się sprzężenie indukcyjne cewki obwodu rezonansowego, znajdującego się na wyjściu wzmacniacza, z cewką obwodu wejściowego. Schemat ogólny tego generatora przedstawiono na rys. 4.2. Wzory służące do obliczenia przybliżonej wartości
”1 | |||||
> |
— RL_ |
t-- r |
=C : |
b | |
i |
Rys. 4.2. Schemat ogólny generatora Meissnera