c��ki i pochodne2

c��ki i pochodne2



J Odx = C

| dx-X-r C

f xdx = ~ x2 +C

«+l

f x* dx — ——h C

J    /7+1

ji<k=J*-'«fc=ln|x|+C

f«**=.£L+c
•    llltf

\exdx=ex + C | sinxdx = -cosa: + C | cos avZv = sin .r + | !gxdx ^In [cos :rj + | ctgxdx = lnjsin x| * C

J -"7" ~ !£x+ C

J cos“x

r dx    _

J “7 2 = ~CtgX+ C

*    sin' ,v

dx

,---= arcsin .v + (

3

r    dx    x

—=== = arcsin — + C

   H

'1


!jT7=arc^+c_ 1

I \fa2 -x dx~ —arcsin t^-+ — yfa2 -x: + C

j    2 W 2


J


dx = —arcsin — — >4a -x +C

2 U 2


[    = lnjx + \(v: 4- a

3 yf?~    r


\/.v“ + a


-1


Jctgnxdx =--ctgn lx—jctgn 2xxdx

+ C

\


.v

»2

W-0 [s}=nx"-'

W-1

1


n


COS X


^;r x

--i--

^4 2


+ C


J ln xdx = x(ln x -1)+C

|ln2 xdx = x(ln2 x-21nx + 2)+C

r dx    1    x -

-Y = -<*rctg—+C

Ja~+x    a    a


/

J r~5 2

Vx -a

r dx 1    1+

Jl-x2 2    1-

^/x


+ C


| —jĄ=-dx=~-Jx2 + n ~ ~InU + V.v‘ + a\ + C



f yfp + adx = ~ V-v + a + — lnj.r + \/.v~’ + n * 2 2 ■

• a -x a •


I sin" x<ix*= - -•sin’1"1 xcosx+ - fsin" “ xdx n    n J

J    ^ _ J

I cosnxdx - -sinxcos*"1 .t +-1 cos" 2xdx

J    n    n J

J tg"xdx = -itg"-2xJx


um

2 - t x ^ f

i W .    1

1/<*S "3-

'Uf*


X

i


X


M=-V-

2 vx


wvx


“ 1 “

.Va.


= ln(x +    ) + C

= ln(x + a/x2 - a~ ) + C l+x

+ C


[sin x\= cosjc [cos x]= - sin .v

[&4=—[—=l+tg2x

COS A"

[c/g^]'= —rV- = -(l + c/gJ.v)

Sl“ “ **

[arcsin x|=


sin" x

1

| arcsin xdx = x arcsin x + V l-x


J arccos xdx = x arccos x -yjl-x2

J arctgxdx = xarctgx -—ln li^x2 |^C

J arcctgxdx = xarcctgx+ln(l + x2) + C

^/w^=lnl/(x)l+c

j^=2V?w+c

f[rwr/-c*)*-


_J/wT


« + l


+c


Vl-.v2


[arccos aJ=


VI-A2

[arctgx]= —1_

1+A"


[arc6’/g.v]'=


l+x2

A


a


[lnxj= —


X


f --1 — = ln|lnx +C J xlnx


[log, -vl'= ~—

.v ln a

'"J1 + XA-;

.r*}= xx(lnx + l)

T'1 1


1

i-a2


a2 + a1 |I=


[ln(x-f \Lx2- a1 j


Va- a2



n *(<i)    *

Z se




6nx(o)~ o')n (fc-t-n-j)

CCDXhr CcC)( V+0*^J


-O

[A* yf'



Wyszukiwarka

Podobne podstrony:
I Całki Riemanna: 1. i J(e* —l)*e*dx 02. jr xdx J(x2+1)2 3. rl+lnx , -dx J x 1
skanuj0004 Całki funkcji elementarnych: Całki: Odpowiadające pochodne. ja dx - a jdx = ax + C (ax
DSC02827 (3) funkcja pierwotna pochodnaJeirti r(x) = /(*), to f{x)dx = F{x) całka nieoznaczona funk
EPSON009 Całki funkcji elementarnych: Całki: Odpowiadające pochodne. Ja dx = a J(ix = ax + C (ax
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
Image33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć
IMAGE33 2 xdx = x2 + l = £ 2 xdx = afć

więcej podobnych podstron