DSCF2143 (2)

DSCF2143 (2)



116



Rjs. 5«22. Zasada metody toczenia stożka: a), schemat, b) wykres zmiany prędkości skrawania

gdzie, w oznacza stosunek trwałości ostrza przypadającej na jedno przej-I    ścle do trwałośoi odpowiadającej zużyciu dopuszczalnemu h .

Z wykresu (rys. 5«22b) możemy wyznaczyć chwilową :prędkość skrawania:

v * TOS [DB + (DA “ DB> £ir * t ]    (5.20)

Podstawiając do wzoru (5 •'19) otrzymamy:

•s Tl

w = (ot*c) J [db + <DA ~ V* ^ir • *] dt:    (5.21)

po scałkowaniu:

w

Ł

P’n °A i gfi


(5.22)

Przeprowadzając dwie próby skrawania dwóch stożków o tych samych śred


nicach da i


oraz tej samej długości L przy różnych


obrotowych n^ 1 n2 otrzymamy różne wartości w iw.


pr ędkośclaoh



1 L s+1 P*nn


_A “B


(5.23)


S+T p*n2


1 L


(5.2*0


Dzieląc zależności (5.23) 1 (5.24), po przekształceniu i zlogarytmowaniu otrzymamy:

s


los


w2


(5.25)


Wartości w,. 1 wg otrzymuje się z pomiaru zużycia ostrza na powierzchni przyłożenia hp^(VB^) 1 h^ (VR>) przy prędkościach obrotowych n^ 1

n2» P° i-] oraz i2 Przedściach na długości toczenia Ł. Zakładając następnie liniową zależność pomiędzy szerokością starcia ostrza 1 czasem skrawania oraz przyjmując kryterium stępienia h^ otrzymamy:

h    h

g |    oraz *2 * 17^ ■    (5.26)

Stałą C otrzymujemy przez podstawienie wartości s do jednego ze wzorów (5.23) lub (5.24)

>s+i


C =


1

s+T


Ł

P*n


- D


s+1\s B


DA"DB



(5.27)


Natomiast stałą °T we wzorze Taylora ustalamy z zależności


cj = C8


(5.28)


Wykładnik potęgowy s można określić dokładniej po przeprowadzeniu więcej niż dwóch prób toczenia stożka.

Wówczas równanie (5.22) można zapisać w postaci:


w


,    .8    -p.S+1    t.S+1

n8 f ar \ .    1 L °A ~ PB

n \IOOO C J s+1 p - tg


(5.29)


Po podstawieniu


t Y 1 L 10Ó0*C) s+1 p


1 UB

bT^b


A = const


(5.30)


w = A*n


s-1


lub po podstawieniu


s -.1 = q w = A*n^


po zlogarytmowaniu


log w = log A + q • log n


(5.3D

(5.32)

(5.33)

(5.34)


Wykonując próby toczenia stożka przy obrotach n^^...^ oraz wyznaczając na podstawie zależności (5.26) w^ ,w2«. .wfc otrzymamy współrzędne punktów, które w układzie logarytmicznym wyznaczają prostą (rys.5>23).


Wyszukiwarka

Podobne podstrony:
116 > j t____—--dł* t „ ? j Sk- n n*consł, v*constJ D*con$t, Rys. 5*22. Zasada
Zdjęcie0946 Metoda C. Winklera Zasada metody 1. Mną pTObkę marecaKup HC1 *otec oraniu metylowego nas
Zdj?cie0953 WŁAŚCIWOŚCI SORPCYJNE GLEB Owieczenlc kwasowości hvdrolJtvcznel metoda Kappena Zasada me
skanuj0014 (52) RT-PCR - zasada metody s poiega na monitorowaniu przyrostu ilości DNA w czasie reakc
Strona11 5.2. Obliczanie współczynnika przenikania ciepła przegród bez mostków liniowych Zasada met
IMG94 (6) Rysunek 22 Zasada trygonometryczna pomiaru wysokości powyżej wierzchołka drzewa lub poniż
doc. dr hab. inż. AlojzySPICHALSKI* 5.03.1909 ■5= 22.01.1977docent Politechniki Gdańskiej, kierownik
gielda?rmakologia od t5 22)    Jak działają inkretyny 23)    Leki hip
8. Refraktometria Zasada metody: jest to instrumentalna metoda optyczna wykorzystującą zależność
77090 P1010069 (13) 1. FILTROWANIE Zasada metody - filtracja poprzez sterylne filtry o porach od 0.2
Lipidy 255 Zasada metody Opisana poniżej metoda enzymatycznego oznaczania cholesterolu jest prosta w
128 ..Ćwiczenia laboratoryjne 7 mechaniki płynów" Rys. 6. Zasada metody smugowej. Zasada metody
CTPYKTYPA IOPIUIIHECKIIX .lim, 5°/ 22°/ * HaXOJHmi!XCH B COÓCTBeHHOCTII IlepMCKOrO KpaH

więcej podobnych podstron