3582425736

3582425736



T

(6

: a lal

nd

«)

:ar

ito

ts)

«s)

«)

<S)

cn


USN


Time: 3 hrs.


08EC046


M.Tcch. Degrec Examination, Dec.08/Jan.09 Linear Algebra


Notę: Answer any FTVEfuli questions


] a. Solve the following system of cquations: x + 2y-3z=I 2x+5y-8z = 4

3x + 8y-13z = 7 by Gauss elimination method. b. Reduce the following matrix:

12—31    2

2    4    -4    6    10    to Rowreduccd Echclon form.

3    6    -ó    9    13


2 1 4    5

-4    1

6    -3

2 a. Express M as a linear eombination of the matrices A. B, C where


c. Find the LU factorization with /.. = 1 for the mairix A =


Max. Marks: 100


(06 Marks)


(06 Marks)


1 -1 4 -1 4 4 3 1


(OS Marks)


k

ts)

«)


4 7"

1 1

1 2

i i

M =

7 9

, A =

1 1

,B =

— n ro

_i

, c=

i

l_


(06 Marks)


«)

or

if

«)

V.

cd

ts)


C.

3 a.

b.

c.


<s)


4 a.


«)


Prove that the set W = {(x,y,z)/x-3y + 4z=0} of the vector space V3(R)is a subspace of

V3(R).    (07    Marks)

Prove that the inversc of two    subspaces    of a    vcctor    space V is a subspace of V. Is it true in

the case of union of two subspaces?    Justify your    answer.    (07    Marks)

If a, p, y are lincarly independent in V(F), prove that the vectors a+p, a-P, a-2p+y are also linearly independent.    (06    Marks)

Prove that any two bases of a finite dimensional vector space V have the same nuniber of elements.    (06    Marks)

Lct T:U -> V be a linear map. Then prove that

i)    R(T) is a subspace ofV.

ii)    N(T) is a subspace of U.

iii) T is 1 — 1 iff the nuli space (N(T)) is a zero subspace.    (08 Marks)

Prove that T:U -> V of a vector space U to a vector space V over the same field F is a linear transformalion if and only if V u, p 6 U and C(, cF


«)


T(C]a + C2P) = CIT(a) + C2T(p)

Find the eigen space of the linear transformation

T : RJ -> R3 defined by

T(x, y, z) - (2x-i-y, y-z, 2y+4z)

Find the linear transformation relative to the bases,


(06 Marks)


(07 Marks)


B, ={(!,!),(-1,1)}, B2 = {(!, 1,1),(1,-1,1X0,0,1)} given the matrix Ay =


1 of 2


1 2 0 1

-1 3


(07 Marks)



Wyszukiwarka

Podobne podstrony:
skanuj0273 (3) Rozdział 10. ♦ Podstawy SQL 287 ♦    dla typu TIME — 00:00:00, ♦
image013 Dr. Larson is a specialrtt rn Med* •cal Genot ics—a nd it ts tho wórk ot goneticistft
33a 3 1 0.8 - 0.6 - 0.4 - S» 0.2 - i 0--- ę cn 05 Ę -0.2
/Al* Rm(V /Al* Rm(V lwU Sh>i Cc«lłlMll tS <*f Ć& ^ P
Spr 3 str 2 ■V
VK0rg/4 REAKCJE Sn2, E2, Sn1, El1.    Szereg nukleofilowości SH”> I “ > CN” >
1040781486649918161938?72777634193511636 n Tr*I "lefr"f"y wcw®ftrwlt to Inl który: *.
YOKOGAWA ♦ A07275 OPTICAL TIME DOMAIN REFLECTOMETER OPTICAL PORT 2017/12/12 12:26 Tryb: Szczegółowy
scan0020 3 1 G s Ts + i X Ts Ts -*• 1 ^ Ts + 1 A    —“Tis + r Ts + 1 iP/ Z zależ
48 7 8® /:• ts 4* L.«s^1 , .^§ SŁi#* ; .Ijy.iria *w’;-v . * ‘ ’ / t irf; ;r«i:-’ ::;
fiza 2 72    -V i 1 1 :_i__:_1 S~ 5 f s ■■ cn P L» •«
Bez nazwy 2 (17) Q^_ ~ 4-Z (X/ Lf _ - (2-q c GXą 6J ^ “i-S- 6Ub= fiAo c^Zh^) TS^T “ C* - /i s 2 ^
British Aircraft?rriers of WW2 (Ships Illustrated)(1) BrjitLshjm%mRĘąsęfeęsi KII mjłiding iafctK-s«,
8cz1 metoda wyznaczników LISTA Ca. >o M^oolCb    ta. nnae;k>clcL, O^OAaeAa ts.
APC 13 08 27 41 5 3d ♦ to express time. e g. After taking/having taken his Master s degree

więcej podobnych podstron