Metody numeryczne zaliczamy do klasy metod rozwiązujących szerokie spektrum zadań matematycznych. Zadania matematyczne możemy rozwiązywać dokładnie (mówimy wtedy o rozwiązaniach analitycznych) lub w sposób przybliżony. W celu zrozumienia otaczającej nas rzeczywistości tworzymy matematyczne modele (opis formalny) różnego typu zjawisk. Metody numeryczne początkowo stosowano do rozwiązywania ciekawych zadań matematycznych (na przykład do wyliczenia pierwiastka z liczby) lub do wyliczenia określonych parametrów w zjawisku fizycznym (na przykład całkowanie równań ruchu). Z czasem, gdy osiągnięto wystarczający rozwój technik komputerowych (wprowadzenie do powszechnego użytku komputerów domowych), skomplikowane modele matematyczne zostały wykorzystane w takich dziedzinach, jak przewidywanie pogody, medycyna, nauki ekonomiczne, statystyka stosowana oraz wielu innych. Obecnie trudno jest wymienić jakąkolwiek dziedzinę działalności człowieka, w której nie korzystano by z obliczeń numerycznych.
Stosowane modele matematyczne nie zawsze dają się rozwiązać dokładnie. Śmiemy twierdzić, że liczba zadań, które możemy dokładnie rozwiązać, jest stosunkowo mała, ogromna liczba zadań jest rozwiązywana w sposób przybliżony przy pomocy komputerów i technik numerycznych. Modele, które mogą opisywać jakieś zjawisko mogą być bardzo skomplikowane, w praktyce ograniczamy się do rozważania uproszczonych modeli, które dadzą się rozwiązać stosunkowo małym nakładem środków. Stosujemy dość często modele liniowe, na przykład zadanie redukujemy do liniowego równania różniczkowego, albo stosujemy wielomian niskiego stopnia (często drugiego lub trzeciego).
Metody numeryczne są rozwijane od wielu lat, istnieje na ten temat bardzo bogata literatura. Istnieją rozbudowane biblioteki algorytmów numerycznych, klasycznym przykładem jest praca „Numerical Recipies in C++”. Tworząc własne programy można korzystać z gotowych algorytmów. Wydaje się jednak, że w celu efektywnego stosowania doskonale opracowanych algorytmów numerycznych, użytkownik powinien posiadać pewien zasób wiedzy zarówno teoretycznej, jak i praktycznej.
Celem prowadzenia wykładów i ćwiczeń z metod numerycznych jest zapoznanie studentów z nowoczesnymi metodami wykonywania obliczeń matematycznych i wszelkiego typu symulacji oraz modelowania komputerowego. Obecnie ważną rolę odgrywa aspekt praktyczny, co prowadzi do szczegółowego omawiania procedur i funkcji, dzięki którym można rozwiązywać zadania wykorzystując komputery.
Niniejszy podręcznik jest przeznaczony dla studentów informatyki na studiach