6. Zadania do wykonania dotyczące układów przekaźnikowych
1. Zbudować układy przekaźnikowe realizujące trój argumentowe funkcje: alternatywę, koniunkcję, NOR, NAND. Jako element wyjściowy wykorzystać lampkę sygnalizacyjną.
Przedstawić warianty układów:
a) z przekaźnikami wejściowymi wyposażonymi w 2 zestyki: no i nz;
b) z przekaźnikami wejściowymi wyposażonymi w 1 zestyk no, układ logiczny jest zbudowany z zestyków przekaźników pośredniczących.
2. Wykorzystując minimalną liczbę zestyków, zbudować układ przekaźników realizujący funkcję /(d, c, b, a) = n[0,3,4,6,9,10, (1,2,8,15)].
3. Zbudować układ przekaźnikowy z hazardem statycznym w jedynkach. Wskazać w tablicy Karnaughta definiującej działanie tego układu sytuacje, w których wystąpi zjawisko hazardu statycznego. Wykonać odpowiednie eksperymenty w celu zaobserwowania zjawiska hazardu.
4. Na podstawie tablic przejść sformułować funkcję przejść przerzutnika wz z dominacją zerowania oraz przerzutnika wz z dominacją wpisywania; naszkicować układy przekaźnikowe spełniające funkcje tych przerzutników i zrealizować fizycznie te układy.
7. Zadania do wykonania dotyczące układów z elementów NAND
1. Wykazać, że funkcja NAND tworzy system funkcjonalnie pełny.
2. Z dwuwejściowych bramek NAND zbudować układ realizujący trój argumentowe funkcje: alternatywę, koniunkcję, NOR, NAND.
3. Wykorzystując bramki NAND o dowolnej liczbie wejść zrealizować minimalną postać funkcji/(d, c, b, a) = fi [0,3,4,6,9,10, (1,2,8,15)].
4. Wykorzystując bramki NAND dwu- lub cztero wejściowe, zbudować układ o czterech binarnych sygnałach wejściowych a, b, c, d, wytwarzających sygnał wyjściowy y = 1 tylko w sytuacji gdy liczba ab (zapisana w kodzie dwójkowym) jest większa od liczby cd (zapisanej w kodzie dwójkowym).
5. Na podstawie odpowiednich tablic przejść, zaprojektować i zbudować przerzutnik wz z dominacją zerowania oraz przerzutnik wz z dominacją wpisywania.