Fosfolipidy i białka - biologia, Fosfolipidy (inaczej fosfatydy lub fostotłuszczowce) to lipidy, w których skład wchodzą: glicerol, kwasy tłuszczowe, kwas fosforowy związany z zasadą azotową, np


Fosfolipidy (inaczej fosfatydy lub fostotłuszczowce) to lipidy, w których skład wchodzą: glicerol, kwasy tłuszczowe, kwas fosforowy związany z zasadą azotową, np. choliną.

Fosfolipidy stanowią istotny składnik budowy błony komórkowej. Fosforylacja lipidów do fosforylowanego kwasu tłuszczowego jest też początkiem ich aktywacji biologicznej, po której następuje dekarboksylacja i dehydrogenacja, które są kolejnymi etapami procesu spalania tłuszczów w żywych organizmach. Występują obficie szczególnie w: tkance nerwowej, wątrobie i krwi.

Charakterystyczną cechą fosfolipidów jest to, że oprócz reszt kwasów tłuszczowych występują w nich również reszty kwasu fosforowego (V). W zależności od rodzaju alkoholu, stanowiącego zrąb cząsteczki, wyróżnia się glicerofosfolipidy (pochodne glicerolu) i sfingofosfolipidy (pochodne sfingozyny - złożonego aminoalkoholu). Przez resztę fosforową do rdzenia glicerofosfolipidowego może być dołączony inny związek organiczny (np. aminokwas, amina). Fosfolipidy stanowią główny składnik lipidowy błon cytoplazmatycznych (np. fosfatydylocholina, zwana także lecytyną).

---------------------------------------------------------------

Białka nie posiadają charakterystycznej dla siebie temperatury topnienia. Przy ogrzewaniu w roztworze, a tym bardziej w stanie stałym, ulegają, powyżej pewnej temperatury, nieodwracalnej denaturacji (ścinanie się włókien białka) - zmianie struktury, która czyni białko nieaktywnym biologicznie (codziennym przykładem takiej denaturacji jest smażenie lub gotowanie jajka). Jest to spowodowane nieodwracalną utratą trzeciorzędowej lub czwartorzędowej budowy białka. Z tej przyczyny dla otrzymania suchej, ale niezdenaturowanej próbki danego białka, stosuje się metodę liofilizacji, czyli odparowywania wody lub innych rozpuszczalników z zamrożonej próbki pod zmniejszonym ciśnieniem. Denaturacja białek może również zachodzić pod wpływem soli metali ciężkich, mocnych kwasów i zasad, niskocząsteczkowych alkoholi, aldehydów oraz napromieniowania. Wyjątek stanowią proste białka, które mogą ulegać także procesowi odwrotnemu, tzw. renaturacji - po usunięciu czynnika, który tę denaturację wywołał. Niewielka część białek ulega trwałej denaturacji pod wpływem zwiększonego stężenia soli w roztworze, jednak proces wysalania jest w większości przypadków w pełni odwracalny, dzięki czemu umożliwia izolowanie lub rozdzielanie białek.

Białka są na ogół rozpuszczalne w wodzie. Do białek nierozpuszczalnych w wodzie należą tzw. białka fibrylarne, występujące w skórze, ścięgnach, włosach (kolagen, keratyna) lub mięśniach (miozyna). Niektóre z białek mogą rozpuszczać się w rozcieńczonych kwasach lub zasadach, jeszcze inne w rozpuszczalnikach organicznych. Na rozpuszczalność białek ma wpływ stężenie soli nieorganicznych w roztworze, przy czym małe stężenie soli wpływa dodatnio na rozpuszczalność białek. Jednak przy większym stężeniu następuje uszkodzenie otoczki solwatacyjnej, co powoduje wypadanie białek z roztworu. Proces ten nie narusza struktury białka, więc jest odwracalny i nosi nazwę wysalania białek.

Białka posiadają zdolność wiązania cząsteczek wody. Efekt ten nazywamy hydratacją. Nawet po otrzymaniu próbki suchego białka zawiera ona związane cząsteczki wody.

Białka, ze względu na obecność zasadowych grup NH2 oraz kwasowych COOH mają charakter obojnaczy - w zależności od pH roztworu będą zachowywały się jak kwasy (w roztworze zasadowym) lub jak zasady (w roztworze kwaśnym). Dzięki temu białka mogą pełnić rolę bufora stabilizującego pH, np. krwi. Różnica pH nie może być jednak znaczna, gdyż białko może ulec denaturacji. Wypadkowy ładunek białka zależy od ilości aminokwasów kwaśnych i zasadowych w cząsteczce. Wartość pH, w której ładunki dodatnie i ujemne aminokwasów równoważą się nazywany jest punktem izoelektrycznym białka.

Białka odgrywają zasadniczą rolę we wszystkich procesach biologicznych. Biorą udział w katalizowaniu wielu przemian w układach biologicznych (enzymy są białkami), uczestniczą w transporcie wielu małych cząsteczek i jonów (np. 1 cząsteczka hemoglobiny przenosząca 4 cząsteczki tlenu), służą jako przeciwciała oraz biorą udział w przekazywaniu impulsów nerwowych jako białka receptorowe. Białka pełnią także funkcję mechaniczno-strukturalną. Wszystkie białka zbudowane są z aminokwasów. Niektóre białka zawierają nietypowe, rzadko spotykane aminokwasy, które uzupełniają ich podstawowy zestaw. Wiele aminokwasów (zazwyczaj ponad 100) połączonych ze sobą wiązaniami peptydowymi tworzy łańcuch polipeptydowy, w którym można wyróżnić dwa odmienne końce. Na jednym końcu łańcucha znajduje się niezablokowana grupa aminowa (tzw. N-koniec), na drugim niezablokowana grupa karboksylowa (C-koniec).

Podział białek

Porównanie kształtu i wielkości kilku białek. Od lewej: Przeciwciało (IgG), Hemoglobina, Insulina, kinaza AK1, ligaza glutaminy.

Ze względu na budowę i skład, dzielimy białka na proste i złożone.
Białka proste zbudowane są wyłącznie z aminokwasów. Dzielimy je na następujące grupy:

  1. protaminy - są silnie zasadowe, charakteryzują się dużą zawartością argininy oraz brakiem aminokwasów zawierających siarkę. Są dobrze rozpuszczalne w wodzie. Najbardziej znanymi protaminami są: klupeina, salmina, cyprynina, ezocyna, gallina.

  2. histony - podobnie jak protaminy są silnie zasadowe i dobrze rozpuszczają się w wodzie; składniki jąder komórkowych (w połączeniu z kwasem dezoksyrybonukleinowym), czyli są obecne także w erytroblastach. W ich skład wchodzi duża ilość takich aminokwasów jak lizyna i arginina.

  3. albuminy - białka obojętne, spełniające szereg ważnych funkcji biologicznych: są enzymami, hormonami i innymi biologicznie czynnymi związkami. Dobrze rozpuszczają się w wodzie i rozcieńczonych roztworach soli, łatwo ulegają koagulacji. Znajdują się w tkance mięśniowej, osoczu krwi i mleku.

  4. globuliny -w ich skład wchodzą wszystkie aminokwasy białkowe, z tym że kwas asparaginowy i kwas glutaminowy w w większych ilościach; w odróżnieniu od albumin są źle rozpuszczalne w wodzie, natomiast dobrze w rozcieńczonych roztworach soli; posiadają podobne właściwości do nich. Występują w dużych ilościach w płynach ustrojowych i tkance mięśniowej.

  5. prolaminy - są to typowe białka roślinne, występują w nasionach. Charakterystyczną właściwością jest zdolność rozpuszczania się w 70% etanolu.

  6. gluteliny - podobnie jak prolaminy - to typowe białka roślinne; posiadają zdolność rozpuszczania się w rozcieńczonych kwasach i zasadach.

  7. skleroproteiny - białka charakteryzujące się dużą zawartością cysteiny i aminokwasów zasadowych oraz kolagenu i elastyny, a także proliny i hydroksyproliny, nie rozpuszczalne w wodzie i rozcieńczonych roztworach soli. Są to typowe białka o budowie włóknistej, dzięki temu pełnią funkcje podporowe. Do tej grupy białek należy keratyna.

Białka złożone:

  1. chromoproteiny - złożone z białek prostych i grupy prostetycznej - barwnika. Należą tu hemoproteidy (hemoglobina, mioglobina, cytochromy, katalaza, peroksydaza) zawierające układ hemowy oraz flawoproteidy.

  2. fosfoproteiny - zawierają około 1% fosforu w postaci reszt kwasu fosforowego. Do tych białek należą: kazeina mleka, witelina żółtka jaj, ichtulina ikry ryb.

  3. nukleoproteiny - składają się z białek zasadowych i kwasów nukleinowych. Rybonukleoproteidy są zlokalizowane przede wszystkim w cytoplazmie: w rybosomach, mikrosomach i mitochondriach, w niewielkich ilościach także w jądrach komórkowych, a poza jądrem tylko w mitochondriach. Wirusy są zbudowane prawie wyłącznie z nukleoproteidów.

  4. lipidoproteiny - połączenia białek z tłuszczami prostymi lub złożonymi, np. sterydami, kwasami tłuszczowymi. Lipoproteidy są nośnikami cholesterolu (LDL, HDL, VLDL). Wchodzą na przykład w skład błony komórkowej.

  5. glikoproteiny - ich grupę prostetyczną stanowią cukry, należą tu m.in. mukopolisacharydy (ślina). Glikoproteidy występują też w substancji ocznej i płynie torebek stawowych.

  6. metaloproteiny - zawierają jako grupę prostetyczną atomy metalu (miedź, cynk, żelazo, wapń, magnez, molibden, kobalt). Atomy metalu stanowią grupę czynną wielu enzymów.

Białka błonowe to białka związane ze strukturą błony biologicznej. W tych błonach białka pełnią rozliczne funkcje niezbędne dla prawidłowego funkcjonowania komórki. Występują m.in. w roli:

Białka integralne

Białek tych nie można ich łatwo oddzielić od błony (na przykład za pomocą roztworów soli) ze względu na wiązania hydrofobowe z elementami dwuwarstwy lipidowej. Ta klasa białek jest zakotwiczona w błonie motywem białkowym. Do ekstrahowania ich należy używać detergentów.

Białka powierzchniowe (prefyryjne)

Białka te łatwo można oddzielić od błony za pomocą roztwór soli. Nie perforują one żadnej z monowarstw błony, a z błoną związane są za pomocą słabych oddziaływań molekularnych, głównie wiązań jonowych, wodorowych i Van der Waals'a. Oddziałują w ten sposób z samą błoną lub z białkami integralnymi. Te białka mają zwykle duże fragmenty polarne i łączą się z fosfolipidami błony wiązaniami jonowymi.



Wyszukiwarka

Podobne podstrony:
Bisynteza białka, Biologia - testy liceum
6 tłuszcze, nienasycone kwasy tłuszczowe, prostanoidy, woski, fosfolipidy Kopia
biosynteza białka 2, Biologia - testy liceum
peptydy i bialka, Biologia-liceum
PROCES BIOSYNTEZY BIAŁKA, BIOLOGIA MEDYCZNA
Bisynteza białka 1, Biologia - testy liceum
aminokwasy i białka - biologia, Gimnazjum
gr2, Związki kompleksowe (inaczej kompleksy, związki koordynacyjne) to związki chemiczne, w których
6 tłuszcze, nienasycone kwasy tłuszczowe, prostanoidy, woski, fosfolipidy Kopia
Myślenie lub rozumowanie to złożony ciągły proces zachodzący w mózgu
biologia, plechowce i organowce, Plechowce- to rosliny którychnie wyrózniamy korzenia ,łodygi, liści
PODSTAWY PRAWA, Podstawy Prawa2, Prawo - jest to zespół norm postępowania ustanowionych lub przyjęty
gleba 2, FRAKCJA GRANULOMETRYCZNA -jest to zgrupowanie cz˙stek gleby wed˙ug ich rozmiar˙w lub ˙redni
Improved biological performance of Ti implants due to surfac
BIOLOGIC PROPERTIES OF NANOCRYSTALLINE SILVER COMPARED TO OTHER SILVER PRODUCTS
Fosfolipid
Regulacja białka supresorowego nowotworów p53. Biologia molekularna. Seminarium 1, biologia- studia
Dwuwarstwa fosfolipidowa

więcej podobnych podstron