POLE MAGNETYCZNE - to przestrzeń w której na ładunki działa siła magnetyczna.Tworzymy układ złożony z miernika i solenoidu. Do solenoidu będziemy wsuwali magnez.Gdy będziemy poruszali magnez , miernik będzie się wychylał.Prąd płynie wtedy gdy będzie się zmieniała ilość linii sił , które przenikają przez ten zwój.
STRUMIEŃ MAGNETYCZNY-to iloczyn skalarny indukcji magnetycznej i wektora powierzchni.Jeśli pole jest jednorodne tzn. Że przez powierzchnię S przepływa taka sama ilość linii sił ,wartość jest stała.
Φ=BS
Φ=BScos (B,n) [Wb]=[Tm2]
Wektory indukcji są prostopadłe do powierzchni.
Jeśli pole nie jest jednorodne:
dΦ=B dS Φ=∫B dS
W polu magnetycznym jednorodnym linie sił są równoległe do siebie a indukcja ma stałą wartość. Przeciwko sile elektrodynamicznej F przeciwstawia się siłę zewnętrzną Fz .
Fz= -F = -I( l × B
Siła zewnętrzna wykonuje pracę przy przesunięciu tego przewodnika o dx .
dW=Fz dx = -Fdx
dW= -I B l dx
ds= l dx, dW= -I B ds
dW= -I dΦ
Elementarny strumień magnetyczny.
dW= -E I dt
E I dt = -I d, E= -dΦ/dt
Siła elektromotoryczna indukcji .
dΦ/dt - szybkość zmian strumienia magnetycznego
PRAWO INDUKCJI FARADAYA (elektromotorycznej) - indukowana siła elektromotoryczna jest proporcjonalna do szybkości zmian strumienia magnetycznego.
REGUŁA PRZEKORY LENCA - kierunek prądu indukowanego jest zawsze taki że pole magnetyczne przezeń wytworzone przeciwstawia się zmianie strumienia magnetycznego zewnętrznego.
BL↑ → Φ → Ein → I → Bin
RÓWNANIA MAXWELLA
(pole elktr.po drodze zamkniętej)
s∫ E ds = 1/ε ∑iQi
P Gaussa dla elektryczności
2. E dl = 0
(pole elekt.-polem zachowawczym)
P indukcji Faradaya
3. B ds = 0
(p.mag. jest bezżródłowe.Aby warunek był spełniony linie sił pola muszą być zamknięte)
Prawo Gaussa dla magnetyzmu
4.∫ B dl = μoI P Ampere'a
(związek pomiędzy natężeniem pola)
W równaniu (1) zamiast ∑Q można zapisać ∫ ρ dV
1'. s∫ E ds = 1/εo ∫ ρ dV
2'. Eind = -dΦ/dt
∫ E dl = -dQ/dt
Φ = s∫ B dS
∫ E dl = -d/dt s∫ B dS
L∫ E dl = -∫ (δB/δt) ds
(siłą elektromotoryczna indukcji zależna od szybkości zmian pola elektomag.)
L∫ - kontur zamknięty
Zmienne pole magnetyczne wywołuje pole elektryczne.
3'. s∫ B dS = 0
4'. L∫ B dl = μo I + μo εo ∫ (δE/δt) dS
Zmienne pole elektryczne wywołuje pole magnetyczne.Zmiana w czasie wektora pola elektrycznego E spowoduje powstanie wiru pola magnetycznego lecz powstanie wiru pola magnetycznego stanowi zmianę w czasie tego wektora więc zmiana wektora B spowoduje powstanie wiru wektora E.
Zmienny w czasie strumień elektryczny
E = dE/dt
FALA ELEKTROM
C = λν prędkość rozchodzenia się wszystkich fal elektromagnetycznych
λ - długość fali
ν - częstość
FALE ELEKTROMAGNETYCZNE :
- promieni kosmiczne
- promanie γ
- prome rendgenowskie
- ultrafiol,ener fotonów
- światło widzialne, podczerwień
- mikrofale,fale radio
ŚWIATŁO MONOCHROMATYCZNE -światło o wyznaczonej długości fali.
DYFRAKCJA - ugięcie światła , najogólniej mówiąc jeśli na drodze wiązki świetlnej znajduje się przeszkoda , to dyfrakcja przejawia się uginaniem się światła przy przejściu obok krawędzi przeszkody.
rów siatki dyfrakcyjnej
nλ = d sin α
W wyniku dyfrakcji :
Δ/d = sin α, Δ = nλ
λf = d sin αf
λc = d sin αc, λc > λf
d sin αc > d sin α
Kąty ugięcia promieni czerwonych są
bardziej ugięte niż promieni fioletowych.
Znając kąt α można określić długość fali.
Światło jest falą elektromagnetyczną.
Przykładem interferencji światła monochromatycznego są Pierścienie Newtona.
Przyrządem do badania interferencji fali jest INTERFEROMETR MAICKELSONA.
Hologram to przykład interferencji fal , poprzez padanie dwóch promieni świetlnych powstaje obraz trójwymiarowy.
PROMIENIOWANIE TERMICZNE CIAŁ- to emitowanie energii przez ciała w postaci fal elektromagnetycznych , ma długości większe niż światło widzialne , leży w zakresie podczerwieni.
ZDOLNOŚĆ EMISYJNA - to energia promieniowania wysyłanego w jednostce czasu z jednostki powierzchni pozostającej w temperaturze T , w postaci fal elektromagnetycznych o częstościach zawartych w przedziale (ν , ν+dν). e( ν, T ) dν
ν - częstotliwość
e - zdolność emisyjna
ZDOLNOŚĆ ABSORPCYJNA- określa jaka część energii fali elektromagnetycznej o częstościach zawartych w przedziale (ν , ν+dν) padających na jednostkę powierzchni ciała zostaje przez nie pochłonięta.
a( ν , T )
a - zdolność absorpcyjna
CIAŁO DOSKONALE CZARNE- ciało pochłaniające całkowicie padające nań promieniowanie świetlne , niezależnie od długości fali , stanowi doskonałe *ródło promieniowania , tzn. w danej temperaturze promieniuje największą możliwą ilością energii , widmo promieniowania ciała doskonale czarnego jest ciągłe , przy czym w miarą wzrostu temperatury ciała maksimum natężenia jego promieniowania przesuwa się w kierunku fal krótkich
e( ν,T )/a( ν,T ) = ε( ν,T )
zdolność emisyjna ciała doskonale czarnego
PRAWO PROMIENIOWANIA KIRCHOFFA- prawo zrównoważonego promieniowania temperaturowego głoszące , że stosunek zdolności emisyjnej ciała do jego zdolności absorpcyjnej nie zależy od rodzaju ciała i jest równy zdolności emisyjnej ciała doskonale czarnego.
ε( ν,T ) = (2Πν2/C2) U( ν,T )
U-uśredniona w czasie energia
U = kT
ε( ν,T ) = (2Πν2/C2) kT
zdolność emisyjna jest funkcją kwadratową częstotliwości
PRAWO WIENA- iloczyn częstotliwości maksymalnej razy pewna stała da nam temperaturę.
νmax const. = T
PRAWO BOLTZMANA STEFANA - prawo wyrażające zależność całkowitej zdolności emisyjnej E ciała doskonale czarnego od jego temperatury bezwzględnej
E = σ T4
STAŁA BOLTZMANA
σ = 5,6 10-8 W/m2K4
Max Planck powiedział że energia może się zmieniać porcjami.
PRAWO PLANCKA - prawo rozkładu energii w widmie promieniowania ciała doskonale czarnego
En = nhν, E = n εo
energia najmniejszego kwantu
U( ν,T ) = εo/ (eεo/kT -1)
E ( ν,T ) = (2Πν2/C2)(hν/ehν/kT -
∞
E= ∫ ε( ν,T ) dν
o
STAŁA PLANCKA
h = 6,62 10-34 J/s
Dla każdego metalu istnieje graniczna częstotliwość gdzie zaczyna się zjawisko fotoelektryczne.
Energia elektronu zależy od częstotliwości światła.
Ilość wybijanych elektronów ( prąd anodowy ) zależy od natężenia padającego światła.
Każdy foton posiada energię którą możemy określić wzorem:
Ef = hν, hν = W + Ek
W - praca wyjścia
hνo = W, Ek = eUn
PRACA WYJŚCIA
- to energia którą musimy dostarczyć aby elektron opuścił metal.
- to energia jaką musimy dostarczyć do elektronu aby przenieść go z poziomu Ferniego do nieskończoności.
POZIOM FERNIEGO -najwyżej położony poziom.
Każdy foton posiada pęd
p = mV
Fotony nie posiadają masy spoczynkowej więc energię fotonu wiążemy z masą:
Ef = hν, E = mC2
w ten sposób fotonowi przypisujemy masę
pf = mC, = Ef/C2
p = mC = ( Ef/C2 ) C = hν/C
p = hν/C, ν = C/λ
pf = h/λ
pęd fotonu
Światło padające na powierzchnię wywiera odpowiednie ciśnienie , które jest mierzalne.
ZJAWISKO COMPTONA - rozpraszanie promienia elektromagnetycznego (głównie rendgenowskiego ) na swobodnych elektronach , polega na tym że w wyniku zderzenia pojedynczego fotonu z elektronem , część energii fotonu zostaje przekazana elektronowi , co powoduje zwiększenie się długości fali rozproszonego promieniowania i odrzucenie elektronu. Zjawisko Comptona jest jednym ze zjawisk świadczących o nieciągłej strukturze promieniowania.
Wpadający foton ma energię hν ,a elektron posiada Ek
ZASADA ZACHOWANIA ENERGII
hνo = hν' + ( m - mo )C2
( m - mo )C2 - energia kinetyczna elektronu ( gdy prędkości są porównywalne z
prędkością światła
ZASADA ZACHOWANIA
pp = pf + pe
pp - pęd początkowy
pp = h/λo , pf = h/λ'
Δλ = λ' - λo = h/moC ( 1 - cosθ )
DUALIZM FALOWO KORPUSKULARNY - właściwość materii polegająca na tym , że w pewnych zjawiskach ujawnia się natura falowa (interferencja , dyfrakcja) , w innych korpuskularna (efekt Comptona).
ATOM WODORU -
STAŁA RYTBERGA
R = 1,09 107 1/m
1/λ = R( (1/K2)-(1/n2 ))
k,n - kolejne l.nat
n > k
k = 1Seria Lymana
k = 2Seria Balmera
k = 3Seria Paschena
MODEL BOHRA - elektrony mogą zmieniać się na określonych orbitach stacjonarnych dla których model pędu elektronu jest wartością stałej Plancka podzielonej przez 2Π.
PIERWSZY POSTULAT BOHRA - atom nie promieniuje energii , jeżeli atom porusza się po orbicie , na której jego kręt jest całkowitą wielokrotnością h/2Π (są to tzw. orbity dozwolone , stacjonarne)
mVr = nh/2Π
* = h/2Π * - h kreślne
DRUGI POSTULAT BOHRA - jeśli elektron przechodzi z niższej powłoki na wyższą to foton otrzymuje energię.
En - Em = hν
En > Ememisja fotonu
En < Empochłanianie fotonu
WIDMO ABSORPCYJNE - to widmo optyczne odpowiadające rozłożeniu światła po przejściu przez daną substancję .
FUNKCJA FALOWA - nie ma żadnego sensu fizycznego.
- to opis matematyczny.
Ψ(x,y,z,y)
KWADRAT AMPLITUDY FUNKCJI FALOWEJ
Ψ*Ψ = Ψ(X,Y,Z,T)2
(określa prawdop. znalezienia cząstki w danej elementarnej obj. w przestrzeni, w danej chwili czasu
∫Ψ2 dV = 1
fala płaska nie może być funkcją falową
PACZKĘ FAL - otrzymujemy poprzez nałożenie się fal harmonicznych
P.F ma określoną szerokość
ZASADA NIEOZNACZONOŚCI HEISENBERGA - nie jest możliwe dokładne określenie położenia i pędu cząstki . im dokładniej określimy jej położenie tym mniej dokładniej pęd, z fizycznego punktu widzenia niemożliwe jest jednoczesne dokładne określenie położenia i pędu cząstki.
Δx Δpx=h
Δy Δpy=h
Δz Δpz =h
Δx -nieoznaczoność położenia
Δpx - nieoznaczoność pędu
ΔE Δt = * - nieoznaczoność energii w czasie