Promieniowanie całkowite, które dochodzi do powierzchni Ziemi nie jest przez tę powierzchnię w całości pochłaniane. Część tego promieniowania ulega odbiciu. Stosunek promieniowania odbitego do promieniowania padającego nosi nazwę albedo. Na przykład albedo dla śniegu wynosi około 80 - 90%, a dla ciemnego gruntu około 15%.
Ilość pochłoniętego lub rozproszonego promieniowania zależy od grubości warstwy powietrza, którą światło przebyło. W związku z tym zmniejszenie natężenia promieniowania światła słonecznego wskutek jego przejścia przez atmosferę zależy także od kąta, pod jakim to światło pada na powierzchnię Ziemi, oraz od wysokości miejsca pomiaru. Zależność natężenia promieniowania od tego kąta uwzględnia się przez podanie tzw. liczby masy powietrznej m (air mass m, AMm), zdefiniowanej wzorem [9]
COS Z
gdzie z oznacza kąt między dwiema prostymi przecinającymi się w punkcie pomiaru na Ziemi, z których jedna przechodzi przez zenit, a druga przez aktualne położenie Słońca na niebie. Wzór (2.1) jest słuszny dla kątów z nie większych od 70° i dla pomiarów wykonanych na poziomie morza. W szczególności AMO jest natężeniem promieniowania poza atmosferą ziemską (stała słoneczna Ee°), a AM 1,5 natężeniem promieniowania dla kąta z =48,19°. Pomiary właściwości ogniw fotowoltaicznych najczęściej wykonywane są dla warunków AM 1,5.
Szacowanie zmian dostępnej energii słonecznej w zależności od daty i czasu, położenia geograficznego oraz orientacji płaszczyzny generatora, jest zadaniem koniecznym, aby dobrać rozmiar systemu PV do wymaganego zapotrzebowania na energię. Dla potrzeb symulacji zazwyczaj wystarczająca jest znajomość zmian nasłonecznienia z dokładnością godzinową.
Poniżej zostanie przedstawiona procedura pozwalająca określić zmiany energii dostępnej dla danego generatora, na podstawie znajomości statystycznej wartości nasłonecznienia w danym dniu, dla płaszczyzny horyzontalnej.