112 Joanna Olbryś, Michał Mursztyn
Olbryś J., Majewska E. (2014a), Identyfikacja okresu kryzysu z wykorzystaniem procedury diagnozowania stanów rynku. Zeszyty Naukowe Uniwersytetu Szczecińskiego nr 802, „Finanse, Rynki Finansowe, Ubezpieczenia" nr 65, s. 699-710.
Olbryś J., Majewska E. (2014b), Direct identification of crisis periods on the CEE stock markets: The influence of the 2007 U.S. subprime crisis, „Procedia Economics and Finanee” vol. 14, s. 461-470.
Olbiy ś J., Majewska E. (2015), Bear market periods during the 2007-2009 financial crisis: Direct evidence from the 1 isegrad countries, „Acta Oeconomica” voI. 65, no. 4, s. 547-565.
Olbryś J„ Mursztyn M. (2015), Comparison of selected trade classification algorithms on the Warsaw Stock Ex-change, „Advances in Computer Science Research" vol. 12, s. 37-52.
Pagan A.R., Sossounov K.A. (2003), A simple framework for analysing buli and bear markets, „Journal of Applied Econometrics” vol. 18, no. 1, s. 23-46.
Peterson M., Sirri E. (2003), Evaluation of the biases in execution costs estimation using trades and ąuotes data, „Journal of Financial Markets” vol. 6, no. 3, s. 259-280.
Piwowar M.S., Wei L. (2003), The sensitivity of effective spread estimates to trade-ąuote matching algorithms, „Electronic Markets" vol. 16, no. 2, s. 112-129.
Ranaldo A. (2001), Intraday market liąuidity on the Swiss Stock Exchange, „Swiss Society for Financial Market Research" vol. 15, no. 3, s. 309-327.
Sarr A., Lybek T. (2002), Measuring liąuidity in financial markets, IMF Working Paper 02/232.
Stoli H.R. (2000), Friction, „Journal of Finanee" vol. 55, no. 4, s. 1479-1514.
Von Wyss R. (2004), Measuring andpredicting liąuidity in the stock market, Dissertation Nr. 2899, University of St. Gal len.
Theissen E. (2001), A test of the accuracy of the Lee/Ready trade classification algorithm, „Journal of International Financial Markets, Institutions and Money” vol. 11, no. 2, s. 147-165.
Wong J., Fung L. (2002), Liąuidity of the Hong Kong stock market sińce the Asian financial crisis, Proceedings of the Third Joint Central Bank Research Conference, Bank for International Settlements, Basel, Switzerland, s. 180-211.
MARKET DEPTH AS ONE OF MARKET LIQUIDITY DIMENSIONS ON THE WARSAW STOCK EXCHANGE
Abstract: Purpose - The main aim of the paper was an empirical analysis of market depth as one of the market liąuidity dimensions on the Warsaw Stock Exchange. The additional goal was a robustness analysis of results obtained with respect to the whole sample period January 2005-June 2015, and three adjacent sub-samples of eąual size: the pre-crisis, crisis, and post-crisis periods.
Design/methodology - 53 WSE-listed companies from three size groups have been investigated. The high-freąuency data was utilized. As the data set do not identify a trade direction, firstly a trade classification algorithm was employed to infer trade sides. Next the proxies of market depth were calculated using the so-called order ratio (OR).
Findings - According to the literaturę, a high order ratio denotes high market depth and Iow liąuidity. A smali order ratio denotes smali market depth and high liąuidity. The empirical results reveal the smallest value of the OR indicator for the most liąuid assets (e.g. KGH, OPL. PEO, PKN, PKO). Moreover, the results turned out to be robust to the choice of the sample and rather do not depend on a firm size.
Originality/value - To the best of the authors’ knowledge, no such research has been undertaken for the Warsaw Stock Exchange thus far.
Keywords: dimensions of market liąuidity', market depth, trade classification algorithms
Olbiyś J., Mursztyn M. (2016). Głębokość tynku jako jeden z wymiarów płynności Giełdy Papierów Wartościowych w Warszawie SA. Finanse, Rynki Finansowe, Ubezpieczenia, I (79), 101-112; www.wneiz.pl/frftt.