11. Literatura
[63] F. Guimet, J. Ferre, R. Boque, Rapid detection of olive-pomace oil adulteration in extra virgin olive oils from the protected denomination of origin “Siurana” using excitation-emission fluorescence spectroscopy and three-way methods of analysis, Anal. Chim. Acta. 544 (2005) 143-152.
[64] S.A. Ordoudi, M. De Los Mozos Pascual, M.Z. Tsimidou, On the ąuality control of traded saffron by means of transmission Fourier-transform mid-infrared (FT-MIR) spectroscopy and chemometrics, Food Chem. 150 (2014) 414-421.
[65] N. Reis, A.S. Franca, L.S. OIiveira, Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DR1FTS) and chemometrics, Talanta. 115 (2013) 563-568.
[66] L.S. Magwaza, S. Landahl, P.J.R. Cronje, H.H. Nieuwoudt, A.M. Mouazen, B.M. Nicolai, i in., The use of Vis/NIRS and chemometric analysis to predict fruit defects and postharvest behaviour of “Nules Clementine” mandarin fruit, Food Chem. 163 (2014) 267-274.
[67] V. Giovenzana, R. Beghi, S. Buratti, R. Civelli, R. Guidetti, Monitoring of fresh-cut Valerianella locusta Laterr. shelf life by electronic nose and VIS-NIR spectroscopy, Talanta. 120 (2014)368-375.
[68] E.Z. Panagou, O. Papadopoulou, J.M. Carstensen, GJ.E. Nychas, Potential of multispectral imaging technology for rapid and non-destructive determination of the microbiological ąuality of beef filets during aerobic storage, Int. J. Food Microbiol. 174 (2014) 1-11.
[69] H. Vasconcelos, C. Saraiva, J.M.M.M. de Almeida, Evaluation of the spoilage of raw chicken breast fillets using Fourier transform infrared spectroscopy in tandem with chemometrics, Food Bioprocess Technol. 7 (2014) 2330-2341.
[70] J.H. Christensen, G. Tomasi, J. Strand, O. Andersen, PARAFAC modeling of fluorescence excitation - emission spectra of fish bile for rapid en route screening of PAC exposure, Environ. Sci. Technol. 43 (2009) 4439-4445.
[71] J. Christensen, E.M. Becker, C.S. Frederiksen, Fluorescence spectroscopy and PARAFAC in the analysis of yogurt, Chemom. Intel 1. Lab. Syst. 75 (2005) 201-208.
[72] M. Ghasemi-Vamamkhasti, M. Forma, NIR spectroscopy coupled with multivariate computational tools for qualitative characterization of the aging of beer, Comput. Electron. Agric. 100(2014) 34-40.
[73] A. Alt Kaddour, B. Cuq, Dynamie NIR spectroscopy to monitor bread dough mixing: A short review, Am. J. Food Technol. 6 (2011) 173-185.
[74] C.C. Fagan, C. Everard, C.P. 0’Donnell, G. Downey, E.M. Sheehan, C.M. Delahunty, i in., Prediction of processed cheese instrumental texture and meltability by mid-infrared spectroscopy coupled with chemometric tools, J. Food Eng. 80 (2007) 1068-1077.
[75] I. Stanimirova, C. Boucon, B. Walczak, Relating gas chromatographic profiles to sensory measurements describing the end products of the Maillard reaction, Talanta. 83 (2011)1239-1246.
[76] S.A. Bortolato, J.A. Arancibia, G.M. Escandar, Chemometrics-assisted excitation-emission fluorescence spectroscopy on nylon membranes. Simultaneous determination of benzo[a]pyrene and dibenz[a,h] anthracene at parts-per-trillion levels in the presence of the remaining EPA PAH priority pollutants as interferences, Anal. Chem. 80 (2008) 8276-8286.
[77] M. Bravo, L.F. Aguilar, W. Quiroz, A.C. 01ivieri, G.M. Escandar, Determination of tributyltin at parts-per-trillion levels in natural waters by second-order multivariate calibration and fluorescence spectroscopy, Microchem. J. 106 (2013) 95-101.
[78] A.G. Garcia-Reiriz, Parallel factor analysis and multivariate curve resolution as data fusion tools to supervise a stream, Chemom. Intell. Lab. Syst. 137 (2014) 120-127.
[79] K..E. Clow, G.J. Hall, H. Chen, J.E. Kenny, Spectral fmgerprinting and classiflcation by location of origin of natural waters by multidimensional fluorescence, w: Proceedings of SPIE -The International Society for Optical Engineering 2004
Strona 137