8416074015
Modelowanie Cyfrowe - laboratorium
2.4. Algebra liniowa
Przykład 2.14
Rozwiąż układ równań liniowych:
f 2x{ + x2 = 1 [3*, + 2x2 = 0
Układ ten można zapisać w postaci macierzowej AX = B gdzie:
Dla której rozwiązanie ma postać:
X = A B
» A= [2 1; 3 2]
A =
2 1
3 2
» B= [1; 0]
B =
1
0
» X=inv(A)*B X =
2.0000
-3.0000
Uwaga!: Zagadnienie to można rozwiązać także korzystając z dzielenia prawo na lewo
» X=A\B
Matlab - Simulink 15
Wyszukiwarka
Podobne podstrony:
64 (96) Przykład 1.19 Rozwiązać układ równań 2.r + 3y - : = 31 X + y + : = 2{ w taki sposób, aby74 (74) Przykład 1.31 Przykład 1.31 Rozwiązać układ równań j x + 2y 4- 3 z = 6 j082 2 162 0) IX. Macierze, wyznaczniki, równania liniowe Zadanie 9.12. Rozwiązać układ równań 2x — 4skanuj0001 (11) Układy f x + y + z = O c) j 2x — y— z — -3 l x-y+ z = O Przykład 3.24 Rozwiązaćprzykładowa algebra Prykłladowe zadania egzaminacyjne z algebry: 1) Rozwiązać ukłaModelowanie Cyfrowe - laboratorium f = 10 12 14Modelowanie Cyfrowe - laboratorium 2.0000 -3.00002.5. Skrypty (.m pliki) Przykład 2.15 Napisz skryptModelowanie Cyfrowe - laboratorium 14 13 1 2 0 14 1 1 2 2 0 1 2 4 7 1 0 Uwaga!: Przy takim080 081 2 80 Ct A f-O . •)O../, ( ■ ■ ••• Programowanie liniowe Przykład 1.20 Rozwiążemy[12] T. Jurlewicz, Z. Skoczylas, Algebra Liniowa 1. Przykłady i zadania, wyd. 7, G3. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1. Przykłady i zadania. OficynaModelowanie Cyfrowe - laboratorium W przypadku gdy A jest macierzą, zwraca wektor wierszowy, któregoModelowanie Cyfrowe - laboratorium » b=a(: , [1:3 5]) - utworzenie macierzy B poprzez pobranie z macModelowanie Cyfrowe - laboratorium Dodanie do elementów macierzy A liczby 2: » A+2 ans = 3Modelowanie Cyfrowe - laboratorium A = 12 3 0 9 8 3 4 7 »inv (A) - zwraca macierz odwrotną do AModelowanie Cyfrowe - laboratorium Działanie pętli polega na wykonaniu ciągu_instrukcji dopókiModelowanie Cyfrowe - laboratorium Zapisz ją pod nazwą silniaO.m, a następnie uruchom wpisując w linModelowanie Cyfrowe - laboratorium function [y]=silnia3(x) %Funkcja SILNIA3 %y=silnia3(x) %obliczawięcej podobnych podstron