1650025913
Rozdział 1. Typy danych, skalary, wektory,macierze
C*A
!—error 10 inconsistent multiplication
Podnoszenie do potęgi, to wielokrotne mnożenie macierzy.
A~3
ans =
! 468. 576. 684. !
! 1062. 1305. 1548. !
! 1656. 2034. 2412. !
ans =
1.2.3. Transpozycja
Polecenie transpozycji macierzy uzyskujemy poleceniem ’. Przykładowo obliczmy macierz transponowaną At.
At=A’
At =
! 1. 4. 7. !
! 2. 5. 8. !
! 3. 6. 9. !
W przypadek macierzy zespolonych transpozycja macierzy generuje macierze sprzężone.
Ac=A+°/0i*eye (3,3)
Ac
1. + i 2. 3.
4. 5. + i 6.
7. 8. 9. + i
Ac_adj=Ac’
Ac_adj =
! 1. - i 4. 7.
! 2. 5. - i 8.
! 3. 6. 9. - i 1.2.4. Produkt skalarny wektorów
Aby otrzymać produkt skalarny dwu wektorów, mnożymy dwa wektory: wierszowy i kolumnowy.
x=linspace(0,1,5)’ x =
Wyszukiwarka
Podobne podstrony:
10 Rozdział 1. Typy danych, skalary, wektory,macierze C =[] Macierz pusta może być wykorzystywana ja9 Rozdział 1. Typy danych, skalary, wektory,macierze 30. 36. 42. 66. 81. 96. 102. 126. 150 1.2.11 Rozdział 1. Typy danych, skalary, wektory,macierze B_new=matrix(B,3,2) B_new = !12 Rozdział 1. Typy danych, skalary, wektory,macierze Wersja polecenia size(): size(A, ’r’) i size(A13 Rozdział 1. Typy danych, skalary, wektory,macierze ! 5. 14 Rozdział 1. Typy danych, skalary, wektory,macierze Wykorzystując polecenie łączenia otrzymujemy2 Rozdział 1. Typy danych, skalary, wektory,macierze • Lista elementów musi być3 Rozdział 1. Typy danych, skalary, wektory,macierzeY=[l+y.i, l-°/0i; 1 ,%i] Y = !  4 Rozdział 1. Typy danych, skalary, wektory,macierze Jako argumentu można użyć również nazwy innej5 Rozdział 1. Typy danych, skalary, wektory,macierze Odmianą polecenia linspaceO jest polecenie logsRozdział 1. Typy danych, skalary, wektory,macierze 7 !12 Rozdział 1. Typy danych, skalary, wektory,macierze Wersja polecenia size(): size(A, ’r’) i size(Awięcej podobnych podstron