5441336905

5441336905



514


J. Giergiel, W. Żylski

NuN2

fl,f2

M2

Z, Zj, l2, h\


r i = r2


r


loads applied to corresponding wheels coefficients of rolling friction of corresponding wheels driving torąues

corresponding distances resulting from the system geometry, h\ = riZf1 radii of corresponding wheels.


The above eąuations do not take into account the smali mass of wheel 3 and rolling friction of this wheel.

While analysing converse the dynamical problem, if the kinematic para-meters of motion are known, it is possible to determine the driving torąue and the multipliers out of the derived eąuations of motion. On account of the found form of the right-hand sides of these eąuations, it is advantageous to introduce a transformation for decoupling the multipliers from the torąues (Żylski, 1996). Aiming at this, eąuations (1.5) should be expressed in a matrix form

M{q)q + C(q,q)q = B(q)-r + JT(g)A    (1.6)

The matrices M. C and B present in the above eąuations result from dynamical eąuations of motion (1.5). The vector of coordinates q can be decomposed as

9 = [<7l>92]T    q£R", q1SRTn, q2eRn~m (1.7)

In this case, eąuation of constraints (1.1) is given in the form

[Ji(9), J2(g)]


91

92


= 0


det Ji(g) 0


(1.8)


The vector q2 should be selected in such a way so that its size would corre-spond to the number of degrees of freedom and so that det J i (q) ^ 0. In such a case

Jl2(<?)

In—m


92 = T(q)q2


9 = ^(9)92 +7X9)92    (1-9)

where J12 = — Jj 1(g)J2(g), and ln_m stands for the identity matrix. In this case, dynamical eąuations of motion (1.6) can be put down in the form

(1.10)


Mn(q)q2 + Cu(q.q)q2 = Bi{q)r + ij (q)X M22(q2)q2 + C22(q2q2)q2 = B2(q2)T

The structure of matrices present in eąuations (1.10) is described in the work by Żylski (1996). Obtained eąuations (1.10) show the so-called reduced



Wyszukiwarka

Podobne podstrony:
Obraz9 (95) 150. 46 Na ciało działa para sił (Fl = F2 = F). Moment obrotowy tej pary sił ma wartość
18.    Podział składnika A pomiędzy 2 niemieszające się ze sobą fazy fl i f2(składnik
metody grupa B *fl 2 iOOĄsHI Jis, ^zj    X AJ    ! ^-Łj/L ClcU -
RYS1 _L T T J_ -> A FSK fn fv f2 fi fn - częstotliwość nośna. w.cz, fL f2 - częstotliwości nar
520 J. Giergiel, W. Żylski 4. Comments and conclusions In the problem of dynamics of mobile robots,
512 J. Giergiel, W. Żylski with nodal linę described as a, substituting driving wheels 1, 2 and free
516 J. Giergiel, W. Żylski (2.1) are coefficients for yariations Se{. From the principle of virtual
518 J. Giergiel, W. Żylski multipliers out of these eąuations will result in Maggie’s eąuations, i.e
1 PEKJJ04    
2011 12 19#;03;256 fl f2 f3 . . . .. . , • . gi 92 93 ... ... ... ... gdzie: N-2 *3-4 CL Cl c
P (ćwiczenia) = 3,0 jeżeli (F1+F2) = 60,0 - 70,0 pkt. 3.5    jeżeli (Fl+F2) = 70,l -7
Image2524 Ponieważ fl(x) = ^rr dla x*0 orazpochodnata nigdzie się n ie zeruje.to
plyta 7 f2 - ogniskowa soczewki L2, s - kąt między osiami optycznymi soczewek Lx, L2 (rys. 1), u - o
10947658?898185181222580959625 n U)fl KCćf/6-/ %łMU ^kccpt^e, fco ęOfetept^/ p Lg^tl^to ,QjU£py —r
10947658?898185181222580959625 n U)fl KCćf/6-/ %łMU ^kccpt^e, fco ęOfetept^/ p Lg^tl^to ,QjU£py —r

więcej podobnych podstron