9 :;0AA.
1. 5@5945< 2 A8AB5<C >BAG5B0,
A2O70==CN A :>@01;5< . MB>9
A8AB5<5 :>@01;L 42865BAO A
>B=>A8B5;L=>9 A:>@>ABLN
r r r
V = V - V . >4C;L MB>9
>B= 2 1
A:>@>AB8 @025=
r
ą
V = 2v cos , (1)
>B=
2
ą
0 55 25:B>@ =0?@02;5= ?>4 C3;>< = 30 : >B@57:C (A< @8A).
2
!;54>20B5;L=>, :>@01;L 42865BAO >B=>A8B5;L=> :>@01;O ?>
?@O<>9 !.
0) 8=8<0;L=>9 @0AAB>O=85 <564C :>@01;O<8 5ABL @0AAB>O=85 >B
B>G:8 4> ?@O<>9 !, :>B>@>5 @02=>
ą L
l = Lsin = . (2)
min
2 2
1) G5284=>, GB> H;N?:0, A?CI5==0O A :>@01;O , 4>AB83=5B
:>@01;O 70 <8=8<0;L=>5 2@5<O, 5A;8 A:>@>ABL 8E A1;865=8O
<0:A8<0;L=0, 0 =0G0;L=>5 @0AAB>O=85 <564C =8<8 <8=8<0;L=>. -B8
CA;>28O 1C4CB 2K?>;=5=K, 5A;8 H;N?:C A@07C A?CAB8BL =0 2>4C 8
=0?@028BL 55 =02AB@5GC :>@01;N . ">340 2@5<O, 70 :>B>@>5 H;N?:0
4>AB83=5B :>@01;O 2KG8A;O5BAO ?> D>@<C;5
L
t = . (3)
min
2v
2) CABL :0?8B0= :>@01;O >B?@02;O5B
H;N?:C G5@57 2@5<O (=0<
=5>1E>48<> =09B8 53> <0:A8<0;L=>
2>7<>6=>5 7=0G5=85) 2 B>G:5 S, 0 70B5<
G5@57 2@5<O t H;N?:0 2AB@5G05BAO A
:>@01;5< 2 B>G:5 D (A<. @8A. ). 0 MB>
2@5<O :>@01;L ?@>945B ?CBL
AD = v t + . 0: A;54C5B 87 @8A. ,
( )
GB>1K H;N?:0 8 :>@01;L 2AB@5B8;8AL 4>;6=> 2K?>;=OBLAO
CA;>285 (:>B>@>5 A;54C5B 87 B5>@5<K :>A8=CA>2 4;O B@5C3>;L=8:0
BSD)
2
22
ut = v + L - v t + - 2 v L - v t + cosą . (4)
( ) ( ) ( ) ( ) ( )
() ( )
1
;O B>3>, GB>1K =09B8 <0:A8<0;L=>5 7=0G5=85 2@5<5=8
=5>1E>48<> @0AA<>B@5BL 2K@065=85 (4) :0: C@02=5=85 >B=>A8B5;L=>
25;8G8=K t 8 >?@545;8BL CA;>28O (7=0G5=8O ), ?@8 :>B>@KE >=>
8<55B =5>B@8F0B5;L=>5 @5H5=85. ?@8=F8?5 MB>B ?CBL @5H5=8O
7040G8 ?@82545B : CA?5EC, ?@0240 ?CB5< 4>;38E 8 3@><>74:8E
0;351@08G5A:8E ?@5>1@07>20=89.
AB0B8, MB> 65 C@02=5=85 (?@8 u = v ) <>6=> 8A?>;L7>20BL 4;O
0;351@08G5A:>3> >1>A=>20=8O @57C;LB0B0, ?>;CG5==>3> 2 ?. 1). 5H82
MB> C@02=5=85 >B=>A8B5;L=> t , <>6=> ?>;CG8BL 7028A8<>ABL
2@5<5=8 42865=8O t + >B 2@5<5=8 , 0 70B5< =09B8 <8=8<C<
( )
MB>9 DC=:F88. -B>B A?>A>1 ?@82>48B : C65 ?>;CG5==><C @57C;LB0BC:
DC=:F8O t + <>=>B>==> 2>7@0AB05B A @>AB>< , A;54>20B5;L=> 55
( )
<8=8<C< 4>AB8305BAO ?@8 = 0.
5@=5<AO : @5H5=8N
?C=:B0 2).
?OBL @0AA<>B@8<
42865=85 :>@01;59 2
A8AB5<5 >BAG5B0, A2O70==>9
A :>@01;5< . MB>9
A8AB5<5 4803@0<<0 ?5@5<5I5=89 :>@01;59 8 H;N?:8 8<55B 284,
r r
ą r
?>:070==K9 =0 @8A. , 745AL >1>7=0G5=> = , u = V - V -
>B= 2 1
2
A:>@>ABL H;N?:8, >B=>A8B5;L=> :>@01;O . 0 @8AC=:5 284=>, GB>
2@5<O (8;8 GB> B> 65 A0<>5 ?5@5<5I5=85 V ) 1C45B <0:A8<0;L=>
?@8 <0:A8<0;L=>< C3;5 ł , <564C =0?@02;5=85< >B=>A8B5;L=>9
r
A:>@>AB8 u>B= 8 >B@57:>< . 0:A8<0;L=>5 7=0G5=85 MB>3> C3;0
<>6=> =09B8, ?>AB@>82 4803@0<<C A:>@>AB59 (@8A. ) .
r
5:B>@ A:>@>AB8 H;N?:8 u <>65B 1KBL =0?@02;5= ?>4
?@>872>;L=K< C3;><, 8=K<8 A;>20<8 53> :>=5F <>65B
@0A?>;030BLAO 2 ;N1>9 B>G:5 =0@8A>20==>9 >:@C6=>AB8. 0: A;54C5B
r
87 @8AC=:0 C3>; ł 1C45B <0:A8<0;5=, 5A;8 25:B>@ u>B= 1C45B
u
:0A0B5;L=K< : MB>9 >:@C6=>AB8. "0:8< >1@07><, sinł = .
max
v
0?8H5< B5>@5<C A8=CA>2 4;O B@5C3>;L=8:0 ABS
2
Vmax L
= , (5)
sinł sin Ą - - ł
()
max max
345 Ą - - ł - C3>; ASB. 7 2K@065=8O (5) =0E>48<
()
max
L sinł L sinł
max max
max = " =" =
V sin + ł 2vcos sin cosł + sinł cos
()
max max max
L sinł
max
= " = (6)
v
sin2 1 - sin2 ł + sinł 2cos2
max max
L 2
= " .
2
v
v
# ś#
3 - 1 + 3
ś# ź#
#
u #
B<5B8<, GB> ?@8
1) u 0 max 0, B.5. H;N?:C =04> A@07C A?CA:0BL =0 2>4C 8 640BL
?>:0 : =59 ?>4?;K25B 2B>@>9 :>@01;L;
2L
2) ?@8 u = v , :0?8B0= <>65B ?>4>640BL 2 B5G5=88 2@5<5=8 max = ;
3V
3) ?@8 u > v H;N?:0 <>65B 4>3=0BL :>@01;L ?>A;5 ;N1>3> 2@5<5=8
>6840=8O .
3) !:>@>ABL A=0@O40 1C45B <8=8<0;L=0, 5A;8 >= ?@>;5B8B
<8=8<0;L=>5 @0AAB>O=85, 1C4CG8 2K?CI5= ?>4 C3;>< 45 :
3>@87>=BC. !;54>20B5;L=> MBC A:>@>ABL <>6=> =09B8 87 C@02=5=8O
2
vmin
= lmin , 8;8
g
Lg
v = .
min
2
3
2. 07;8G8O 2 ?>:070=8OE 2>;LB<5B@>2, 2>7=8:0N 87-70 B>3>, GB> >=8
=5 O2;ONBAO 8450;L=K<8, B> 5ABL 8<5NB :>=5G=>5 A>?@>B82;5=85,
:>B>@>5 <K >1>7=0G8< RV , :>B>@>5 A@02=8<> A A>?@>B82;5=85<
@578AB>@>2 R .
0 AE5<5 C:070=K >1>7=0G5=8O B>:>2, B5:CI8E G5@57
@07;8G=K5 M;5<5=BK AE5<K. A?>;L7CO 70:>=K ?>A;54>20B5;L=>3> 8
?0@0;;5;L=>3> A>548=5=8O, <>6=> 70?8A0BL A;54CNI85 C@02=5=8O
U = I RV
3 3
U = I R + RV . (1)
()
2 3
U = I R + U
1 2 2
K@078< A8;C B>:0 I2 G5@57 A8;C B>:0 I3, 8A?>;L7CO A8AB5<C
C@02=5=89
I = I '+I
2 2 3
, (2)
I ' RV = U
22
87 :>B>@>9 A;54C5B
U
2
I = + I . (3)
2 3
RV
5 A<>B@O =0 B>, GB> 2 A8AB5<5 4 C@02=5=89 (1), (3) A>45@68BAO 5
=58725AB=KE, 87 =55 <>6=> =09B8 7=0G5=85 U .
2
59AB28B5;L=>, 2 B@5BL5 C@02=5=85 A8AB5<K (1) ?>4AB028<
2K@065=85 (3)
# ś#
U
2
(4)
U = + I R + U .
ś# ź#
1 32
# R #
V
87 ?5@2KE 42CE C@02=5=89 MB>9 65 A8AB5<K 2K@078<:
I R = U - U (87 @07=>AB8 MB8E C@02=5=89);
3 2 3
R U
2
= - 1 (87 G0AB=>3> MB8E C@02=5=89);
R U
V 3
8 ?>4AB028< 8E 2 C@02=5=85 (4)
# ś#
U
2
U = U - 1ź# + U - U + U .
ś#
1 2 2 3 2
# U #
3
5H5=85 MB>3> :204@0B=>3> C@02=5=8O 8<55B 284
4
2
5U + 4U U - U
3 1 2 3
U = H" 86B .
,
2
2
B@8F0B5;L=K9 :>@5=L <K >B1@>A8;8, :0: =5 8<5NI89 D878G5A:>3>
A<KA;0.
B<5B8<, GB> 2 =0H59 F5?8 RV H" 12R , GB> ?>4B25@6405B =0H5
8AE>4=>5 ?@54?>;>65=85.
3. CABL F8;8=4@ ?>4=O;AO =04 2>4>9 =0 2KA>BC x .
">340 459AB2CNI0O =0 =53> A8;0 @E8<540 @02=0
F = S h - x g . (1)
( )
A 0
"0: :0: MB0 A8;0 87<5=O5BAO ?> ;8=59=><C 70:>=C,
B> 4;O 2KG8A;5=8O 55 @01>BK <>6=> 8A?>;L7>20BL
55 A@54=55 7=0G5=85. B0:, @01>B0 A8;K @E8<540
1
A = Shg " h (2)
A 0
2
?>H;0 =0 C25;8G5=85 :8=5B8G5A:>9 8 ?>B5=F80;L=>9 M=5@388
F8;8=4@0
2
1 Shv
2
Sh g = Shg " h + . (3)
0
22
7 MB>3> C@02=5=8O >?@545;O5< A:>@>ABL F8;8=4@0
- 2 <
0
v = gh H" 17 .
,
A
0
1@0B8B5 2=8<0=85, ?@8 > F8;8=4@ =5 2KA:>G8B 87 2>4K
2
?>;=>ABLN.
4. C45< AG8B0BL, GB> ?@>B5:0O ?> >B>?8B5;L=K< @0480B>@0<, 2>40
>ABK205B 4> :><=0B=>9 B5<?5@0BC@K. ;O B>3>, GB>1K B5<?5@0BC@0 2
:><=0B5 >AB0;0AL =587<5==>9, =5>1E>48<>, GB>1K ?>A;5 @5<>=B0
2>40 ?@8=>A8;0 2 548=8FC 2@5<5=8 B0:>5 65 :>;8G5AB2> B5?;>BK,
GB> 2K@0605BAO C@02=5=85<
cv S t - t = cv S t - t .
( ) ( )
1 1 1 0 2 2 2 0
7 MB>3> C@02=5=8O >?@545;O5< A:>@>ABL 42865=8O 2>4K ?> B@C10<
S t - t
( )
1 1 0
v = v .
2 1
S t - t
( )
2 2 0
5H5=85 7040G.
5
10 :;0AA.
1. @8 A<5I5=88 <CDBK =0
@0AAB>O=85 x 28AOI89 3@C7
?>4=8<5BAO =0 2KA>BC
2 2
y = x + h - h . (1)
KG8A;OO ?@>872>4=CN ?> 2@5<5=8 >B
MB>3> 2K@065=8O, CAB0=>28< A2O7L
<564C A:>@>ABO<8 <CDBK v 8 3@C70 u
x
u = v . (2)
2 2
x + h
0<5B8<, GB> ?>A;54=55 A>>B=>H5=85 u = v cosą <>6=> =09B8 ?CB5<
35><5B@8G5A:8E 25:B>@=KE ?>AB@>5=89.
0) 01>B0 2=5H=8E A8; ?@8 A<5I5=88 <CDBK @02=0 87<5=5=8N
?>B5=F80;L=>9 M=5@388 3@C70, ?>MB><C
2
A = mgy = mg x0 + h2 - h (3)
().
1) 0<5B8<, GB> :>340 <CDB0 ?@>E>48B ?>;>65=85 @02=>25A8O (=8BL
25@B8:0;L=0), A:>@>ABL 3@C70 >1@0I05BAO 2 =C;L. >MB><C <CDB0
1C45B 8<5BL <0:A8<0;L=CN A:>@>ABL 8<5==> ?@8 ?@>E>645=88
?>;>65=8O @02=>25A8O, B0: :0: 2 MB>< ?>;>65=88 87<5=5=85
?>B5=F80;L=>9 M=5@388 <0:A8<0;L=>, 8 2AO 70?0A5==0O M=5@38O (3)
?5@5945B 2 :8=5B8G5A:CN M=5@38N <CDBK. -BC <0:A8<0;L=CN
A:>@>ABL =0945< 87 70:>=0 A>E@0=5=8O <5E0=8G5A:>9 M=5@388
2
mv
2 2
max
= mg x + h - h
( 0 ),
2
8;8
2 2
(4)
v = 2g x + h - h
max ().
0
2) ;O >?@545;5=8O A:>@>AB8 <CDBK 2 ?@>872>;L=>9 B>G:5 >?OBL
2>A?>;L7C5<AO 70:>=>< A>E@0=5=8O <5E0=8G5A:>9 M=5@388
(:8=5B8G5A:0O M=5@38O <CDBK 8 3@C70 @02=0 87<5=5=8N
?>B5=F80;L=>9 M=5@388 3@C70):
2 2
mv mu
2 2 2 2
+ = mg x + h - h x + h - h .
()-()
( 0 )
2 2
A?>;L7CO A>>B=>H5=85 (2), =0E>48< 8A:><K5 A:>@>AB8
2 2
x + h
2 2 2 2
<CDBK v = 2g x + h - x + h , (5)
()
0
2 2
2x + h
2
x
2 2 2 2
8 3@C70 u = 2g x + h - x + h (6)
().
0
2 2
2x + h
6
;O ?>AB@>5=8O 3@0D8:>2 MB8E DC=:F89 8E C4>1=> ?@54AB028BL 2
2845
2
v + 1
22
= + 1 - + 1
();,
0
2
2gh 2 + 1
2
u
22
= + 1 - + 1
();
0
2
2gh 2 + 1
x
345 >1>7=0G5=> = . @0D8:8 <>4C;59 MB8E DC=:F89 (?@8
h
0 = 2, 0 = 4 ) ?@54AB02;5=K =0 @8AC=:5.
3) 1@0B8< 2=8<0=85, GB> G8A;5==K5 7=0G5=8O ?0@0<5B@>2 B0:>2K,
GB> x0 >> h. >MB><C ?@0:B8G5A:8 2A5 2@5<O 42865=8O (70
8A:;NG5=85< <0;>3> CG0AB:0 21;878 ?>;>65=8O @02=>25A8O) =8BL,
C45@6820NI0O <CDBC, 3>@87>=B0;L=0. MB>< A;CG05 <>6=>
?@81;865==> AG8B0BL, GB> <CDB0 42865BAO A ?>AB>O==K<
g
CA:>@5=85< a = (C1548B5AL 2 MB>< A0<>AB>OB5;L=>).
2
!;54>20B5;L=>, 2@5<O 55 42865=8O >B :@09=53> ?>;>65=8O 4>
2x x
00
?>;>65=8O @02=>25A8O >?@545;O5BAO D>@<C;>9 == 2 , 0
a g
x
0
?5@8>4 42865=8O, >G5284=> 2 G5BK@5 @070 1>;LH5 T = 8 H" 2,5c .
g
2. @8 =5?>4286=>9 =0:;>==>9 ?;>A:>AB8 A:>;L65=85 1@CA:0
=0G8=05BAO :>340 ?@>5:F8O A8;K BO65AB8 =0 =0:;>==CN ?;>A:>ABL
?@52KH05B <0:A8<0;L=CN A8;C B@5=8O ?>:>O, :0: 8725AB=> MB>
7
3@0=8G=>5 CA;>285 A2O7K205B C3>; =0:;>=0 8 :>MDD8F85=B B@5=8O
A>>B=>H5=85<
= tgą . (1)
@8 @02=><5@=>< 2@0I5=88 ?;>A:>AB8
H0910 42865BAO A F5=B@>AB@5<8B5;L=K<
CA:>@5=85< a = &!2l , ?>MB><C 2 ?@>5:F88
=0 =0:;>==CN ?;>A:>ABL C@02=5=85
2B>@>3> 70:>=0 LNB>=0 1C45B 8<5BL 284
(<K ?@54?>;0305<, GB> H0910 AB@5<8BAO
A>A:>;L7=CBL 2=87):
m&!2l = mg sin - FB@. (2)
!:>;L65=85 =0G=5BAO, :>340 F 4>AB83=5B 25;8G8=K
B@.
N = mg cos . (3)
7 C@02=5=89 (1)-(3) =0E>48<
sin
g g ( - ą)
&!= sin - tgą " cos = (4)
()
l l cosą
0<5B8<, GB> ?@8 1>;LH8E C3;>2KE A:>@>ABOE H0910 <>65B =0G0BL
A:>;L78BL 225@E ?> =0:;>==>9 ?;>A:>AB8, 2 MB>< A;CG05 A8;0 B@5=8O
87<5=8B =0?@02;5=85 =0 ?@>B82>?>;>6=>5. "0:>5 42865=85
=0G=5BAO, 5A;8 C3;>20O A:>@>ABL 4>AB83=5B 25;8G8=K
sin +
g g ( ą)
&! = sin + tgą " cos = . (5)
()
2
l l cosą
"0: :0: 2 CA;>288 7040G8, =5 C:070=> =0?@02;5=85 A42830 H091K, B>
40==0O 7040G0 8<55B 420 >B25B0 (4) 8 (5).
3. 02;5=85 684:>AB8 =0 4=> A>AC40 <>65B
8AG57=CBL, 5A;8 ?>4 459AB285< ?@8;>65==>3>
=0?@O65=8O 2 684:>AB8 ?>O28BAO B0:>9
M;5:B@8G5A:89 B>:, :>B>@K9 2708<>459AB2CO A
<03=8B=K< ?>;5<, ?@82545B : ?>O2;5=8N A8;K
<?5@0, :>B>@0O :><?5=A8@C5B A8;C BO65AB8.
>=OB=>, GB> B>: 4>;65= B5GL ?5@?5=48:C;O@=>
3@0=O< b c . K@078< A8;C BO65AB8 8 A8;C
<?5@0 G5@57 ?0@0<5B@K 7040G8
mg = abcg , (1)
U Ubc Ubc
F = IBa = Ba = Ba = B . (2)
A
R * a *
8
@8@02=820O ?>;CG5==K5 2K@065=8O, =0E>48< 8A:><>5 7=0G5=85
* ag
=0?@O65=8O U = .
B
4. "0: :0: 70@O4K H0@8:>2 ?@>B82>?>;>6=K, B> H0@8:8 =0G=CB
A1;860BLAO, 2 <><5=B C40@0 ?@>87>945B 8E ?5@570@O4:0, ?>A;5 G53>
H0@8:8 =0G=CB @07J5760BLAO.
!:>@>AB8 H0@8:>2 v 2 <><5=B AB>;:=>25=8O =0945< 87
1
70:>=0 A>E@0=5=8O M=5@388
2
mv q q q q
1 1 2 1 2
2 =- , (1)
2 4Ą a 4Ą D
0 0
q q
1 2
745AL - M=5@38O 2708<>459AB28O H0@8:>2, =0E>4OI8EAO =0
4Ąr
@0AAB>O=88 r . #G8BK20O 70:>= A>E@0=5=8O M;5:B@8G5A:>3> 70@O40 8
@025=AB2> 70@O4>2 H0@8:>2 ?>A;5 AB>;:=>25=8O, ?>;CG8< 25;8G8=C
MB>3> 70@O40
q + q
1 2
q '= q '= . (2)
1 2
2
"0: :0: C40@ H0@8:>2 01A>;NB=> C?@C389, B> 25;8G8=K A:>@>AB59
H0@8:>2 A@07C ?>A;5 AB>;:=>25=8O >AB0=CBAO ?@56=8<8
(5AB5AB25==>, 87<5=OBAO =0?@02;5=8O A:>@>AB59).
0?8H5< >?OBL 70:>= A>E@0=5=8O M=5@388 4;O 42865=8O
H0@8:>2 ?>A;5 AB>;:=>25=8O
2 2
2 2
mv q + q 1 mv q + q 1
# ś# # ś#
1 1 2 2 1 2
2 + = 2 + (3)
ś# ź# ś# ź#
# # # #
22 4Ą D 22 4Ą a
0 0
45 v A:>@>AB8 H0@8:>2 =0E>4OI8EAO =0 @0AAB>O=88 a . 7
2
2K@065=89 (1) 8 (3) <>6=> =09B8 MBC A:>@>ABL.
2
## ś#
1 q + q A<
ś#
1 2
v = ś# - q q H" 10 .
ź# ,
ś# ź#
2 1 2
#
4Ą Dm 2 A
## #
0
@8 2K2>45 ?>A;54=59 D>@<C;K <K ?@5=51@53;8 M=5@3859
2708<>459AB28O H0@8:>2, =0E>4OI8EAO =0 @0AAB>O=88 a , B0: :0:
a >> D .
0<5B8<, GB> :8=5B8G5A:0O M=5@38O H0@8:>2 ?>O28;0AL
1;03>40@O C<5=LH5=8N ?>;=>9 M=5@388 M;5:B@>AB0B8G5A:>3> ?>;O.
9
Wyszukiwarka
Podobne podstrony:
3 etap 05 solutions3 etap 02 problems3 etap 00 solutions3 etap 06 solutions3 etap 07 solutions3 etap 04 solutions3 etap 01 solutions3 etap 08 experimental solutions3 etap 07 experimental solutions3 etap 11 experimental solutions3 etap 10 experimental solutionsMargit Sandemo Cykl Saga o czarnoksiężniku (02) Blask twoich oczut informatyk12[01] 02 101introligators4[02] z2 01 n02 martenzytyczne1OBRECZE MS OK 02więcej podobnych podstron