Tranzystory są urządzeniami półprzewodnikowymi umożliwiającymi sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Wykorzystuje się je do wzmacniania małych sygnałów oraz przetwarzania informacji w postaci cyfrowej. Nazwa "tranzystor" pochodzi z połączenia słów transfer i rezystor.
Wśród tranzystorów wyróżniamy dwa podstawowe typy: unipolarny (polowy), w którym sterowanie prądem odbywa się za pomocą pola elektrycznego, oraz bipolarny, który transportuje ładunki za pośrednictwem obu rodzajów nośników jakie istnieją w półprzewodniku, tzn. elektronów i dziur. Półprzewodniki, w których na skutek nieregularności sieci krystalicznej przeważają nośniki typu dziurowego nazywa się półprzewodnikami typu p (niedomiarowymi). Gdy przeważają nośniki elektronowe nazywa się je półprzewodnikami typu n (nadmiarowymi). Zbudowane są z trzech warstw półprzewodników o różnym rodzaju przewodnictwa, tworzących dwa złącza PN; sposób polaryzacji złącz determinuje stan prac tranzystora.
Tranzystor posiada trzy końcówki przyłączone do warstw półprzewodnika, nazywane:
emiter (ozn. E),
baza (ozn. B),
kolektor (ozn. C).
Ze względu na kolejność warstw półprzewodnika rozróżnia się dwa typy tranzystorów: pnp oraz npn; w tranzystorach npn nośnikiem prądu są elektrony, w tranzystorach pnp dziury.
Zasada działania tranzystora NPN polega na tym, że przez złącze BE przepływają nośniki większościowe ładunku, w tym przede wszystkim elektrony swobodne z emitera (typ n) do bazy. Również dziury z obszaru bazy (typ p) przepływają przez złącze do emitera. Prąd dziurowy jest znacznie mniejszy ze względu na mniejszą liczbę dziur, wynikającą z mniejszej objętości emitera. Mniejsza część elektronów swobodnych po osiągnięciu obszaru bazy wypełnia istniejące tam dziury, czyli podlega procesowi rekombinacji. Znacznie większa część elektronów swobodnych po znalezieniu się w obszarze bazy jest przyciągana przez kolektor i przepływa przez złącze BC spolaryzowane zaporowo, tak jak własne nośniki mniejszościowe bazy. Wypływające z emitera elektrony swobodne tworzą prąd emitera IE, który rozdziela się w obszarze bazy na mały prąd bazy IB i duży prąd kolektora IC.
Bardzo ważnym jest aby strata elektronów w bazie była jak najmniejsza. Miarą tego na ile prąd kolektora odpowiada prądowi emitera jest współczynnik ၡ nazywany zwarciowym współczynnikiem wzmocnienia prądowego prądu emitera (współczynnik wzmocnienia prądowego tranzystora w układzie WB), definiowany jako:
ၡ = (IC-IC0)/IE
gdzie IC0 jest prądem złącza kolektorowego spolaryzowanego zaporowo przy IB=0.
Konstrukcja tranzystora bipolarnego, a głównie małe rozmiary bazy sprawiają, że stosunek między prądem kolektora, a prądem bazy jest stały. Stosunek IC/ IB nazywa się współczynnikiem wzmocnienia prądowego prądu bazy (współczynnik wzmocnienia prądowego tranzystora w układzie WE) i oznacza się symbolem ၢ.
IE = IC + IB
IC = ၢIB
Zależność pomiędzy obydwoma współczynnikami opisuje równanie:
ၢ = ၡ / (1-ၡ)
Stały stosunek IC/ IB oznacza, ze pewnej wartości prądu bazy IB odpowiada określona wartość prądu kolektora IC. Można zatem zmieniać prąd bazy po to aby uzyskiwać ၢ-krotnie większe zmiany prądu kolektora. Uzyskuje się zatem wzmocnienie przez tranzystor mocy sygnału sterującego. Większą moc sygnału w obwodzie kolektora otrzymuje się kosztem mocy czerpanej z zasilacza.
Dla sygnałów zmiennoprądowych o małych amplitudach tranzystor jest czwórnikiem liniowym. Czwórnik opisywany jest za pomocą czterech wielkości wyrażających napięcia i prądy na jego wejściu i wyjściu. Aby móc opisać go za pomocą układu równań dwóch zmiennych należy dwie z czterech wielkości czwórnika opisać za pomocą dwóch pozostałych. W zależności od tego, które ze zmiennych uznane zostaną za zmienne zależne, a które za zmienne niezależne otrzymać można 6 różnych układów równań. Najczęściej wykorzystywane są jednak układy z parametrami:
a) impedancyjnymi:
U1 = z11I1 + z12I2
U2 = z21I1 + z22I2
b) admitancyjnymi:
I1 = y11U1 + y12U2
I2 = y21U1 + y22U2
c) mieszanymi h (układ z parametrami hybrydowymi):
U1 = h11I1 + h12U2
I2 = h21I1 + h22U2
Na poniższym wykresie charakterystyki wyjściowej tranzystora pokazano przykład dozwolonego obszaru pracy tranzystora:
Tranzystor pracujący w dowolnym układzie pracy charakteryzują prądy przez niego płynące i napięcia panujące na jego zaciskach. W związku z tym można określić cztery rodziny statycznych charakterystyk prądowo-napięciowych, które przedstawione zostały na poniższych rysunkach:
1) Charakterystyka wyjściowa tranzystora, przedstawiająca zależność prądu kolektora IC od napięcia kolektor-emiter UCE przy doprowadzonym napięciu wejściowym baza-emiter UBE i stałym prądzie bazy IB. Z charakterystyki tej można stwierdzić iż powyżej pewnego napięcia prąd kolektora prawie nie zależy od napięcia UCE, oraz że do wywołania dużej zmiany prądu kolektora ၄IC wystarczy mała zmiana napięcia baza-emiter ၄UBE
2) Charakterystyka przejściowa przedstawia prąd kolektora IC jako funkcję napięcia baza-emiter UBE, oraz IB =const. Charakterystyka ta ma charakter wykładniczy.
3) Charakterystyka wejściowa opisuje zależność prądu bazy IB od napięcia baza-emiter UBE, przy stałym napięciu kolektor-emiter UCE. Charakterystyka ta, podobnie jak i następna jest wykorzystywana rzadziej od dwóch wcześniejszych.
4) Charakterystyka zwrotna przedstawia zależność prądu kolektora od prądu kolektora IC od prądu bazy IB, przy UCE=const Widać na niej, że prąd kolektora jest w pewnym stopniu proporcjonalny do prądu bazy.
Znając charakterystykę wejściową i wyjściową (podawane w katalogach), można wyznaczyć dwie pozostałe poprzez rzutowanie na oś odpowiednich punktów należących do znanych charakterystyk. Postać charakterystyki wejściowej i wyjściowej jest taka sama, jak charakterystyki złącza półprzewodnikowego polaryzowanego odpowiednio w kierunku przewodzenia i w kierunku zaporowym.