structure of free moLecuLes in the gas phase
This table gives information on the geometric structure of se-
lected molecules in the gas phase, including the overall geometry,
interatomic distances, and bond angles . The molecules have been
chosen to provide data on a wide variety of chemical bonds and
to illustrate the influence of molecular environment on bond dis-
tances and angles . The table is restricted to molecules with con-
ventional covalent or ionic bonds, but it should be pointed out
that structure data on many loosely bonded complexes of the van
der Waals type have recently become available . The references
below contain data on many molecules that are not included here
and give additional information such as uncertainties and isoto-
pic variations .
The two techniques for gas phase structure determination are
spectroscopy and electron diffraction . The following codes are
used to indicate the method used for each set of data:
ED – Gas phase electron diffraction
MW – Microwave spectroscopy, including both measurements
in bulk gases and molecular beams
IR – Infrared spectroscopy
R – Raman spectroscopy
UV – Electronic spectroscopy in the ultraviolet and visible re-
gions, including fluorescence measurements
ESR – Electron spin resonance .
In some cases data from two sources have been combined to
derive the structure; these are labeled by “ED, MW,” for example .
Because of the internal vibrations that are present in all mol-
ecules, even in their lowest energy state, the definition of inter-
atomic distance is not a simple matter . The ideal measure is the
equilibrium distance in the hypothetical non-vibrating state,
designated by r
e
. This is the value of the separation of the atoms
at the minimum of the potential function that describes the forc-
es between the two atoms . All other measures represent some
form of average, generally complex, over the vibrational mo-
tions . Since the potential function is asymmetric and less steep
at distances beyond the potential minimum, the average distance
is normally greater than r
e
. Distances determined by electron
diffraction (ED) represent an average over all vibrational states
that are populated at the temperature of the measurement; the
most common measure is designated r
g
. Distances determined
by spectroscopy (MW, IR, R, or UV) through measurements on
the ground vibrational state of the molecule, designated by r
0
,
describe some form of average, not easily defined, over the zero-
point vibrations . Another measure that is frequently used in
microwave spectroscopy is the “substitution” distance r
s
, which
is operationally defined through a series of measurements on
different isotopic species . In simple cases, r
s
often lies between
r
0
and r
e
and is therefore a closer approximation to r
e
. Several
other types of averages have been used; good discussions can be
found in Volumes II/25 and II/28 of the Landolt-Börnstein series
(Reference 1) and in References 4 and 5 .
Unless otherwise specified, distances and angles given in this
table are r
0
values if the method is spectroscopic and r
g
values if
the method is electron diffraction . When given, equilibrium and
substitution distances are designated by r
e
and r
s
, respectively .
Many interatomic distances and angles calculated by ab initio
techniques have been reported in the recent literature . However,
it should be emphasized that all data in this table are obtained
from direct experimental measurements . In a few cases, ab initio
calculations of vibration-rotation interaction constants have been
combined with the primary experimental measurements to derive
r
e
values in the table .
The number of significant figures in the values is an indication
of the precision of the measurement; thus a distance quoted to
three decimal places is probably reliable to about 0 .005 Å or better .
However, discrepancies between r
e
, r
0
, and r
g
values for the same
bond are often the order of 0 .01 Å because of vibrational averaging
considerations, so care must be taken in comparing bond distances
in different molecules . Some distances in simple molecules are giv-
en here to four or five decimal places, but little chemical significance
can be attached to differences beyond the third decimal place .
The table is presented in two parts: Part A covers molecules that
do not contain carbon while Part B lists carbon-containing mol-
ecules . Because many of the entries in Part A are free radicals or
other transient species whose systematic chemical names are unfa-
miliar, the listing in Part A is in order of chemical formula . Part B is
ordered by name . In both parts the second column gives informa-
tion on the overall configuration of the molecule, often indicated by
the point group of the equilibrium geometry . Columns 3 through 8
give the values of the bond distances and angles, and the last column
indicates the experimental method . Distances are given in Å units,
where 1 Å = 10
-10
m or 0 .1 nm . Angles are given in degrees .
The efforts of Kozo Kuchitsu in preparing an earlier version of
this table and in giving advice on the new version are gratefully
acknowledged .
references
1 . Landolt-Börnstein Numerical Data and Functional Relationships in
Science and Technology, Springer-Verlag, Berlin . The following vol-
umes are in the series Structure Data of Free Polyatomic Molecules:
II/7, 1976
II/15,1987
II/21, Supplement to II/7 and II/15, 1992
II/23, Supplement to II/7, II/15, and II/21, 1995
II/25A, Inorganic Molecules, 1998
II/25B, Molecules Containing One or Two Carbon Atoms, 1999
II/25C, Molecules Containing Three or Four Carbon Atoms, 2000
II/25D, Molecules Containing Five or More Carbon Atoms, 2003
II/28A, Inorganic Molecules, 2006
II/28B, Molecules Containing One or Two Carbon Atoms, 2006
II/28C, Molecules Containing Three or Four Carbon Atoms, 2007
II/28D, Molecules Containing Five or More Carbon Atoms, 2007 .
2 . Harmony, M . D ., Laurie, V . W ., Kuczkowski, R . L ., Schwendeman,
R . H ., Ramsay, D . A ., Lovas, F . J ., Lafferty, W . J ., and Maki, A . G .,
“Molecular Structure of Gas-Phase Polyatomic Molecules Determined
by Spectroscopic Methods”, J. Phys. Chem. Ref. Data, 8, 619, 1979 .
3 . Huber, K . P ., and Herzberg, G ., Molecular Spectra and Molecular
Structure IV. Constants of Diatomic Molecules, Van Nostrand
Reinhold, London, 1979 .
4 . Hargittai, M ., “Molecular Structure of Metal Halides,” Chem. Rev . 100,
2233-2301, 2000 .
5 . Harmony, M . D ., and Berry, R . J ., Struct. Chem . 1, 49, 1989 .
9-19
6679X_S09.indb 19
4/11/08 3:45:20 PM
part 1 molecules not containing carbon
Formula
Structure
Bond distances in Å and angles in degrees
Method
AgBr
Ag—Br (r
e
)
2 .3931
MW
AgCl
Ag—Cl (r
e
)
2 .2808
MW
AgF
Ag—F (r
e
)
1 .9832
MW
AgH
Ag—H (r
e
)
1 .617
UV
AgI
Ag—I (r
e
)
2 .5446
MW
AgLi
Ag—Li
2 .41
UV
AgO
Ag—O (r
e
)
2 .0030
UV
AgOH
bent
Ag—O
2 .016
O—H
0 .952
∠HOAg
108 .3 (ass .) MW
AlBr
Al—Br (r
e
)
2 .295
UV
AlBr
3
D
3h
Al—Br
2 .221
ED
AlCa
Al—Ca
3 .148
UV
AlCl
Al—Cl (r
e
)
2 .1301
MW
AlCl
3
D
3h
Al—Cl
2 .063
ED
AlCo
Al—Co
2 .283
UV
AlCu
Al—Cu
2 .339
UV
AlF
Al—F (r
e
)
1 .6544
MW
AlF
3
D
3h
Al—F
1 .633
ED
AlH
Al—H (r
e
)
1 .6482
UV
AlI
Al—I (r
e
)
2 .5371
MW
AlI
3
D
3h
Al—I
2 .461
ED
AlK
Al—K
3 .88
UV
AlMn
Al—Mn
2 .638
UV
AlNi
Al—Ni
2 .321
UV
AlO
Al—O (r
e
)
1 .6176
UV
AlS
Al—S (r
e
)
2 .029
UV
AlV
Al—V
2 .620
UV
AlZn
Al—Zn
2 .696
UV
Al
2
Al—Al (r
e
)
2 .701
UV
Al
2
Br
6
Al
Al
Br
b
Br
b
Br
a
Br
a
Br
a
Br
a
Al—Br
a
∠Br
b
AlBr
b
2 .234
91 .6
Al—Br
b
∠Br
a
AlBr
a
2 .433
122
ED
D
2h
Al
2
Cl
6
See Al
2
Br
6
D
2h
Al—Cl
a
2 .061
Al—Cl
b
2 .250
ED
∠Cl
b
AlCl
b
90 .0
∠Cl
a
AlCl
a
122
AsBr
3
C
3v
As—Br
2 .324
∠BrAsBr
99 .6
ED
AsCl
3
C
3v
As—Cl
2 .165
∠ClAsCl
98 .6
ED, MW
AsF
3
C
3v
As—F
1 .710
∠FAsF
95 .9
ED, MW
AsF
5
As
F
a
F
b
F
b
F
b
F
a
As—F
a
1 .711
As—F
b
1 .656
ED
D
3h
AsH
As—H (r
e
)
1 .5232
UV
AsH
3
C
3v
As—H (r
e
)
1 .511
∠HAsH (θ
e
)
92 .1
MW, IR
AsI
3
C
3v
As—I
2 .557
∠IAsI
100 .2
ED
AsN
As—N (r
e
)
1 .6184
UV
AsO
As—O (r
e
)
1 .6236
UV
AsP
As—P (r
e
)
1 .99954
MW
As
2
As—As (r
e
)
2 .1026
UV
AuH
Au—H (r
e
)
1 .5237
UV
Au
2
Au—Au (r
e
)
2 .4719
UV
BBr
B—Br (r
e
)
1 .888
UV
BBr
3
D
3h
B—Br
1 .893
ED
BCl
B—Cl (r
e
)
1 .7153
UV
BClF
2
C
2v
B—Cl (r
s
)
1 .728
B—F
1 .315
∠FBF
118 .1
MW
9-20
structure of Free molecules in the gas phase
6679X_S09.indb 20
4/11/08 3:45:22 PM
Formula
Structure
Bond distances in Å and angles in degrees
Method
BCl
3
D
3h
B—Cl
1 .742
ED
BF
B—F (r
e
)
1 .2626
UV
BF
2
H
B—H
1 .189
B—F
1 .311
∠FBF
118 .3
MW
BF
2
OH
F
a
F
b
BOH
B—F
a
(r
e
)
1 .3229
B—F
b
(r
e
)
1 .3129
B—O (r
e
)
1 .3448
MW
planar
∠FBF (θ
e
)
118 .36
∠F
a
BO (θ
e
)
122 .25
∠BOH (θ
e
)
113 .14
F
a
cis to OH
O—H (r
e
)
0 .9574
BF
3
D
3h
B—F
1 .313
ED, IR
BH
B—H (r
e
)
1 .2325
UV
BH
2
NH
2
planar
B—N
1 .391
B—H
1 .195
N—H
1 .004
MW
∠HBH
122 .2
∠HNH
114 .2
BH
3
planar
B—H
1 .1900
IR
BH
3
PH
3
staggered form
B—P
1 .937
B—H
1 .212
P—H
1 .399
MW
∠PBH
103 .6
∠BPH
116 .9
∠HBH
114 .6
∠HPH
101 .3
BI
3
D
3h
B—I
2 .118
ED
BN
B—N (r
e
)
1 .281
UV
BO
B—O (r
e
)
1 .2045
EPR
BO
2
linear
B—O
1 .265
UV
BS
B—S
1 .6091
UV
B
2
B—B (r
e
)
1 .590
UV
B
2
H
6
H
a
H
b
H
a
B
B
H
a
H
b
H
a
B—H
a
1 .19
B—H
b
1 .33
B···B
1 .77
IR, ED
∠H
a
BH
a
122
∠H
b
BH
b
97
B
3
H
3
O
3
B—O
1 .376
∠BOB
120
∠OBO
120
ED
B
3
H
6
N
3
C
2
B—N
1 .435
B—H
1 .26
N—H
1 .05
ED
∠BNB
121
∠NBN
118
BaBr
Ba—Br (r
e
)
2 .8445
UV
BaBr
2
Ba—Br
2 .912
∠BrBaBr
137 .0
ED
BaCl
Ba—Cl (r
e
)
2 .6828
UV
BaF
Ba—F (r
e
)
2 .163
UV
BaH
Ba—H (r
e
)
2 .2318
UV
BaI
Ba—I (r
e
)
3 .0848
UV
BaI
2
Ba—I
3 .150
∠IBaI
137 .6
ED
BaO
Ba—O (r
e
)
1 .9397
MW
BaOH
linear
Ba—O
2 .200
O—H
0 .927
UV
BaS
Ba—S (r
e
)
2 .5074
MBE
BeCl
2
linear
Be—Cl (r
e
)
1 .791
ED,IR
BeF
Be—F (r
e
)
1 .3609
UV
BeF
2
linear
Be—F (r
e
)
1 .3730
IR
BeH
Be—H (r
e
)
1 .3431
UV
BeH
2
linear
Be—H(r
e
)
1 .3264
IR
BeO
Be—O (r
e
)
1 .3308
UV
BeS
Be—S (r
e
)
1 .7415
UV
BiBr
Bi—Br (r
e
)
2 .6095
MW
BiBr
3
C
3v
Bi—Br
2 .577
∠BrBiBr
98 .6
ED
BiCl
Bi—Cl (r
e
)
2 .4716
MW
BiCl
3
C
3v
Bi—Cl
2 .424
∠ClBiCl
97 .5
ED
BiF
Bi—F (r
e
)
2 .0516
MW
BiF
3
C
3v
Bi—F
1 .987
∠FBiF
96 .1
ED
BiH
Bi—H (r
e
)
1 .805
UV
BiI
Bi—I (r
e
)
2 .8005
MW
BiI
3
C
3v
Bi—I
2 .807
∠IBiI
99 .5
ED
BiO
Bi—O (r
e
)
1 .934
UV
BiP
Bi—P (r
e
)
2 .29345
IR
Bi
2
Bi—Bi (r
e
)
2 .6596
UV
BrCl
Br—Cl (r
e
)
2 .1361
MW
BrF
Br—F (r
e
)
1 .7590
MW
BrF
3
F
b
F
a
Br
F
a
Br—F
a
Br—F
b
1 .810
1 .721
∠F
ax
BrF
eq
85 .1
∠F
a
BrF
b
86 .2
MW
C
2v
structure of Free molecules in the gas phase
9-21
6679X_S09.indb 21
4/11/08 3:45:24 PM
Formula
Structure
Bond distances in Å and angles in degrees
Method
BrF
5
C
4v
Br—F (av .)
1 .753
(Br—F
eq
) –
(Br—F
ax
)
0 .069
∠F
ax
BrF
eq
85 .1
ED, MW
BrN
3
BrN
a
N
b
N
c
N
a
—N
b
1 .113 (ass .) N
b
—N
c
1 .247
N
a
—Br
1 .899
ED
planar
∠NNN
170 .7
∠BrNN
109 .7
BrO
Br—O (r
e
)
1 .7172
MW
BrO
2
C
2v
Br—O (r
e
)
1 .644
∠OBrO (θ
e
)
114 .3
MW
Br
2
Br—Br (r
e
)
2 .2811
R
CaBr
2
linear
Ca—Br
2 .62
ED
CaCl
Ca—Cl (r
e
)
2 .43676
UV
CaCl
2
linear
Ca—Cl
2 .483
ED
CaF
Ca—F (r
e
)
1 .967
UV
CaH
Ca—H (r
e
)
2 .002
UV
CaI
Ca—I (r
e
)
2 .8286
UV
CaI
2
linear
Ca—I
2 .840
ED
CaO
Ca—O (r
e
)
1 .8221
UV
CaOH
linear
Ca—O
1 .985
O—H
0 .921
UV
CaS
Ca—S (r
e
)
2 .3178
UV
CdH
Cd—H (r
e
)
1 .781
EPR
CdH
2
linear
Cd—H
1 .6792
IR
CdBr
2
linear
Cd—Br
2 .394
ED
CdCl
2
linear
Cd—Cl
2 .284
ED
CdI
2
linear
Cd—I
2 .582
ED
CeF
4
T
d
Ce—F
2 .036
ED
CeI
3
quasiplanar
Ce—I
2 .948
ED
ClBS
linear
B—Cl
1 .681
B—S
1 .606
MW
ClF
Cl—F (r
e
)
1 .6283
MW
ClF
3
F
b
F
a
Cl
F
a
Cl—F
a
1 .698
Cl—F
b
1 .598
∠F
a
ClF
b
87 .5
MW
ClN
3
ClN
a
N
b
N
c
N
a
—N
b
1 .253
N
b
—N
c
1 .113
N
a
—Cl
1 .746
MW
planar
∠NNN
171 .0
∠ClNN
108 .7
ClO
Cl—O (r
e
)
1 .5696
MW, UV
ClO
2
C
2v
Cl—O
1 .470
∠OClO
117 .38
MW
Cl
2
Cl—Cl (r
e
)
1 .9878
UV
Cl
2
O
C
2v
Cl—O
1 .6959
∠ClOCl
110 .89
MW
CoBr
2
linear
Co—Br
2 .241
ED
CoCl
2
linear
Co—Cl
2 .113
ED
CoF
2
linear
Co—F
1 .754
[Co—F (r
e
)]
1 .738
ED
CoF
3
D
3h
Co—F
1 .732
ED
CoH
Co—H (r
e
)
1 .542
UV
CrF
2
linear
Cr—F
1 .795
ED
CrF
3
D
3h
Cr—F
1 .732
ED
CrF
4
T
d
Cr—F
1 .706
ED
CrH
Cr—H (r
e
)
1 .656
UV
CrO
Cr—O (r
e
)
1 .615
UV
CsBr
Cs—Br (r
e
)
3 .0723
MW
CsCl
Cs—Cl (r
e
)
2 .9063
MW
CsF
Cs—F (r
e
)
2 .3454
MW
CsH
Cs—H (r
e
)
2 .4938
UV
CsI
Cs—I (r
e
)
3 .3152
MW
CsO
Cs—O (r
e
)
2 .3007
MW
CsOH
linear; large amplitude
bending mode
Cs—O (r
e
)
2 .395
O—H (r
e
)
0 .97
MW
Cs
2
Cs—Cs (r
e
)
4 .47
UV
CuBr
Cu—Br (r
e
)
2 .1734
MW
CuCl
Cu—Cl (r
e
)
2 .0512
MW
CuF
Cu—F (r
e
)
1 .7449
MW
CuF
2
linear
Cu—F
1 .713
ED
CuH
Cu—H (r
e
)
1 .4626
UV
CuI
Cu—I (r
e
)
2 .3383
MW
CuLi
Cu—Li
2 .26
UV
CuO
Cu—O (r
e
)
1 .7244
UV
9-22
structure of Free molecules in the gas phase
6679X_S09.indb 22
4/11/08 3:45:25 PM
Formula
Structure
Bond distances in Å and angles in degrees
Method
CuOH
bent
Cu—O (r
s
)
1 .769
O—H
0 .952
∠HOCu
110 .24 (θ
s
)
MW
CuS
Cu—S
2 .051
UV
Cu
2
Cu—Cu (r
e
)
2 .2197
UV
DyBr
3
quasiplanar
Dy—Br
2 .609
ED
DyCl
3
quasiplanar
Dy—Cl
2 .461
ED
FN
3
FN
a
N
b
N
c
N
a
—N
b
1 .253
N
b
—N
c
1 .132
N
a
—F
1 .439
MW
planar
∠NNN
170 .3
∠FNN
103 .8
F
2
F—F (r
e
)
1 .4119
R
FeBr
2
linear
Fe—Br
2 .294
ED
FeCl
2
linear
Fe—Cl
2 .132
UV,ED
FeF
2
linear
Fe—F
1 .769
[Fe—F (r
e
)]
1 .755
ED
FeF
3
D
3h
Fe—F
1 .763
ED
FeH
Fe—H
1 .620
IR
FeO
Fe—O
1 .444
UV
FeS
Fe—S
2 .017
MW
GaBr
Ga—Br (r
e
)
2 .3525
MW
GaBr
3
D
3h
Ga—Br
2 .249
ED
GaCl
Ga—Cl (r
e
)
2 .2017
MW
GaCl
3
D
3h
Ga—Cl
2 .110
ED
GaF
Ga—F (r
e
)
1 .7744
MW
GaF
3
D
3h
Ga—F
1 .725
ED
GaH
Ga—H (r
e
)
1 .663
UV
GaI
Ga—I (r
e
)
2 .5747
MW
GaI
3
D
3h
Ga—I
2 .458
ED
GaO
Ga—O
1 .744
UV
Ga
2
Br
6
See Al
2
Br
6
Ga—Br
a
2 .250
Ga—Br
b
2 .453
ED
D
2h
∠Br
a
GaBr
a
92 .7
∠Br
b
GaBr
b
123
Ga
2
Cl
6
See Al
2
Br
6
Ga—Cl
a
2 .116
Ga—Cl
b
2 .305
ED
D
2h
∠Cl
a
GaCl
a
90
∠Cl
b
GaCl
b
124 .5
GdBr
3
C
3v
Gd—Br
2 .641
ED
GdCl
3
C
3v
Gd—Cl
2 .488
ED
GdF
3
C
3v
Gd—F
2 .053
ED
GdI
3
C
3v
Gd—I
2 .840
∠IGdI
108
ED
GeBrH
3
C
3v
Ge—H
1 .526
Ge—Br
2 .299
∠HGeH
106 .2
MW, IR
GeBr
2
Ge—Br (r
e
)
2 .359
∠BrGeBr
101 .0
ED
GeBr
4
T
d
Ge—Br
2 .272
ED
GeClH
3
C
3v
Ge—H
1 .537
Ge—Cl
2 .150
∠HGeH
111 .0
IR, MW
GeCl
2
Ge—Cl (r
e
)
2 .186
∠ClGeCl
100 .3
ED
GeCl
4
T
d
Ge—Cl
2 .113
ED
GeFH
3
C
3v
Ge—H
1 .522
Ge—F
1 .732
∠HGeH
113 .0
MW, IR
GeF
2
Ge—F (r
e
)
1 .7321
∠FGeF (θ
e
)
97 .15
MW
GeH
Ge—H (r
e
)
1 .5880
UV
GeHI
Ge—I
2 .525
Ge—H
1 .593
∠HGeI
93 .5
UV
GeH
4
T
d
Ge—H
1 .5251
IR, R
GeI
2
Ge—I
2 .540
∠IGeI
102 .1
ED
GeI
4
T
d
Ge—I
2 .515
ED
GeO
Ge—O (r
e
)
1 .6246
MW
GeS
Ge—S (r
e
)
2 .0121
MW
GeSe
Ge—Se (r
e
)
2 .1346
MW
GeTe
Ge—Te (r
e
)
2 .3402
MW
Ge
2
H
6
Ge—Ge
2 .403
Ge—H
1 .541
ED
∠HGeH
106 .4
∠GeGeH
112 .5
HBr
H—Br (r
e
)
1 .4145
MW
HCl
H—Cl (r
e
)
1 .2746
MW
HClO
ClOH (bent)
Cl—O
1 .690
O—H
0 .975
∠HOCl
102 .5
MW, IR
HClO
4
O
a
O
a
O
a
Cl
O
b
H
Cl—O
a
∠O
a
ClO
a
1 .407
114 .3
Cl—O
b
∠O
a
ClO
b
1 .639
104 .1
ED
structure of Free molecules in the gas phase
9-23
6679X_S09.indb 23
4/11/08 3:45:27 PM
Formula
Structure
Bond distances in Å and angles in degrees
Method
HF
H—F (r
e
)
0 .9169
MW
HFO
FOH (bent)
F—O
1 .442
O—H
0 .96
∠HOF
97 .2
MW
HI
H—I (r
e
)
1 .6090
MW
HIO
IOH (bent)
I—O
1 .9941
O—H
0 .967
∠HOI
103 .9
MW
HNO
bent
N—O
1 .212
N—H
1 .063
∠HNO
108 .6
UV
HNO
2
s-trans
conformer
s-cis
conformer
MW
O
b
—H
0 .958
O
b
—H
0 .98
N—O
b
1 .432
N—O
b
1 .39
N—O
a
1 .170
N—O
a
1 .19
∠O
a
NO
b
110 .7
∠O
a
NO
b
114
∠NO
b
H
102 .1
∠NO
b
H
104
HNO
3
planar
N—O
a
O
c
—H
∠O
c
NO
a
1 .20
0 .96
113 .9
N—O
b
∠O
c
NO
b
1 .21
115 .9
N—O
c
∠HO
c
N
1 .41
102 .2
MW
HNSO
planar
N—S
1 .512
S—O
1 .451
N—H
1 .029
MW
∠NSO
120 .4
∠HNS
115 .8
HN
3
HN
a
N
b
N
c
N
a
—N
b
1 .245
N
b
—N
c
1 .134
N
a
—H
1 .015
MW
planar
∠NNN
171 .8
∠HNN
109 .2
HPO
P—O
1 .4843
P—H
1 .473
∠HPO
104 .57
MW
H
2
H—H
(r
e
)
0 .74144
UV
H
2
O
C
2v
O—H
(r
e
)
0 .9575
∠HOH (θ
e
)
104 .51
MW, IR
H
2
O
2
C
2
O—O
1 .475
∠OOH
94 .8
dihedral angle 119 .8
IR
H
2
S
C
2v
H—S (r
e
)
1 .3356
∠HSH (θ
e
)
92 .12
MW, IR
H
2
SO
4
O
c
O
d
S
H
a
O
a
O
b
H
b
O—H
∠O
a
SO
b
∠O
a
SO
d
dihedral angle
between the
H
a
O
a
S and
O
a
SO
b
planes
0 .97
101 .3
106 .4
90 .9
S—O
a
∠O
c
SO
d
∠H
a
O
a
S
dihedral angle
between the
H
a
SO
b
and
O
c
SO
d
planes
1 .574
123 .3
108 .5
88 .4
S—O
c
∠O
a
SO
c
dihedral angle
between the
H
a
O
a
S and
O
a
SO
c
planes
1 .422
108 .6
20 .8
MW
C
2
H
2
S
2
C
2
S—S
2 .055
S—H
1 .327
∠SSH
91 .3
ED, MW
dihedral angle 90 .6
HfBr
4
T
d
Hf—Br
2 .450
ED
HfCl
4
T
d
Hf—Cl
2 .316
ED
HfF
Hf—F
1 .8596
UV
HfF
4
T
d
Hf—F
1 .909
ED
HfI
4
T
d
Hf—I
2 .662
ED
HgBr
2
linear
Hg—Br
2 .384
ED
HgCl
2
linear
Hg—Cl
2 .252
ED
HgH
Hg—H (r
e
)
1 .7404
UV
HgI
2
linear
Hg—I
2 .568
ED
HoCl
3
Ho—Cl
2 .462
ED
HoF
3
Ho—F
2 .007
ED
HoO
Ho—O
1 .797
UV
IBr
I—Br (r
e
)
2 .4691
MW
ICl
I—Cl (r
e
)
2 .3210
MW
IF
I—F (r
e
)
1 .9098
UV
IF
5
C
4v
I—F (av .)
1 .860
(I—F
eq
) –
(I—F
ax
)
0 .03
∠F
ax
IF
eq
82 .1
ED, MW
IO
I—O (r
e
)
1 .8676
MW
I
2
I—I (r
e
)
2 .6663
R
InBr
In—Br (r
e
)
2 .5432
MW
InCl
In—Cl (r
e
)
2 .4012
MW
InCl
3
In—Cl
2 .291
ED
InF
In—F (r
e
)
1 .9854
MW
InH
In—H (r
e
)
1 .8376
UV
9-24
structure of Free molecules in the gas phase
6679X_S09.indb 24
4/11/08 3:45:29 PM
Formula
Structure
Bond distances in Å and angles in degrees
Method
InI
In—I (r
e
)
2 .7537
MW
IrF
6
O
h
Ir—F
1 .831
ED
KBH
4
H
a
(BH
3
)K (C
3v
)
B—H
(BH
3
)
1 .272
B—H
a
1 .233
K—B
2 .656
MW
KBr
K—Br (r
e
)
2 .8208
MW
KCl
K—Cl (r
e
)
2 .6667
MW
KF
K—F (r
e
)
2 .1716
MW
KH
K—H (r
e
)
2 .244
UV
KI
K—I (r
e
)
3 .0478
MW
KOH
linear; large amplitude
bending mode
K—O
2 .212
O—H
0 .91
MW
K
2
K—K (r
e
)
3 .9051
UV
KrF
2
linear
Kr—F
1 .89
ED
LaBr
La—Br (r
e
)
2 .65208
MW
LaBr
3
C
3v
La—Br
2 .742
ED
LaCl
La—Cl (r
e
)
2 .49804
MW
LaCl
3
C
3v
La—Cl
2 .589
ED
LaF
La—F (r
e
)
2 .02338
MW
LaI
La—I (r
e
)
2 .87885
MW
LaO
La—O (r
e
)
1 .82591
UV
LiBH
4
H
a
(BH
3
)Li (C
3v
)
B—H
(H
3
)
1 .257
B—H
a
1 .218
Li—B
1 .939
MW
LiBr
Li—Br (r
e
)
2 .1704
MW
LiCl
Li—Cl (r
e
)
2 .0207
MW
LiF
Li—F (r
e
)
1 .5639
MW
LiH
Li—H (r
e
)
1 .5949
MW
LiI
Li—I (r
e
)
2 .3919
MW
LiO
Li—O (r
e
)
1 .68822
UV
LiOH
linear
Li—O (r
e
)
1 .5776
O—H (r
e
)
0 .949
MW
Li
2
Li—Li (r
e
)
2 .6729
UV
Li
2
Cl
2
Li
Cl
Cl
Li
Li—Cl
2 .23
Cl—Cl
3 .61
∠ClLiCl
108
ED
Li
2
O
linear
Li—O
1 .606
UV
LuBr
3
C
3v
Lu—Br
2 .557
ED
LuCl
3
C
3v
Lu—Cl
2 .417
∠ClLuCl
112
ED
LuI
3
C
3v
Lu—I
2 .768
ED
MgBr
Mg—Br (r
e
)
2 .34742
MW
MgCl
Mg—Cl (r
e
)
2 .1964
UV
MgCl
2
linear
Mg—Cl
2 .179
ED
MgF
Mg—F (r
e
)
1 .7500
UV
MgF
2
linear
Mg—F
1 .771
ED
MgH
Mg—H (r
e
)
1 .7297
UV
MgO
Mg—O (r
e
)
1 .749
UV
MgOH
linear
Mg—O
1 .770
O—H
0 .912
UV
Mg
2
Mg—Mg (r
e
)
3 .891
UV
MnBr
2
linear
Mn—Br
2 .344
ED
MnCl
2
linear
Mn—Cl
2 .202
ED
MnF
2
linear
Mn—F
1 .811
[Mn—F (r
e
)]
1 .797
ED
MnH
Mn—H (r
e
)
1 .7308
UV
MnI
2
linear
Mn—I
2 .538
ED
MoCl
4
O
C
4v
Mo—Cl
2 .279
Mo—O
1 .658
ED
∠ClMoCl
87 .2
MoF
4
Mo—F
1 .851
ED
MoF
6
O
h
Mo—F
1 .821
ED
NBr
N—Br (r
e
)
1 .79
UV
NCl
N—Cl (r
e
)
1 .6107
UV
NClH
2
N—H
1 .017
N—Cl
1 .748
MW, IR
∠HNCl
103 .7
∠HNH
107
NCl
3
N—Cl
1 .759
∠ClNCl
107 .1
ED
structure of Free molecules in the gas phase
9-25
6679X_S09.indb 25
4/11/08 3:45:31 PM
Formula
Structure
Bond distances in Å and angles in degrees
Method
NF
N—F (r
e
)
1 .3170
UV
NF
2
N—F
1 .3528
∠FNF
103 .18
MW
NH
2
N—H
1 .024
∠HNH
103 .3
UV
NH
2
NO
2
N—N
1 .427
N—H
1 .005
MW
dihedral angle
between NH
2
and NNO
2
planes
128 .2
∠HNH
115 .2
∠ONO
130 .1
NH
3
C
3v
N—H (r
e
)
1 .012
∠HNH (θ
e
)
106 .7
IR
NH
4
Cl
H
3
N····HCl (C
3v
)
N—Cl
3 .136
MW
NH
N—H (r
e
)
1 .0362
LMR
NH
2
OH
bisector of HNH angle is
trans to OH bond
N—O
1 .453
N—H
1 .02
O—H
0 .962
MW
∠HNO
103 .3
∠HNH
107
∠NOH
101 .4
NO
N—O (r
e
)
1 .1506
IR
NOCl
N—O
1 .14
N—Cl
1 .975
∠ONCl
113
MW
NOF
N—O
1 .136
N—F
1 .512
∠FNO
110 .1
MW
NO
2
N—O
1 .193
∠ONO
134 .1
MW
NO
2
Cl
C
2v
N—O
1 .202
N—Cl
1 .840
∠ONO
130 .6
MW
NO
2
F
C
2v
N—O
1 .1798
N—F
1 .467
∠ONO
136
MW
NS
N—S (r
e
)
1 .4940
IR
N
2
N—N (r
e
)
1 .0977
UV
N
2
H
4
H
a
atom is closer to the C
2
axis, H
b
is farther from the
C
2
axis
N—N
∠HNH
dihedral angle
of internal
rotation
1 .449
106 .6 (ass .)
91
N—H
∠NNH
a
1 .021
112
∠NNH
b
106
ED, MW
N
2
O
N—N (r
e
)
1 .1284
N—O (r
e
)
1 .1841
MW, IR
N
2
O
3
O
c
N
a
N
b
O
b
O
a
N
a
—N
b
N
b
—O
b
∠O
a
N
a
N
b
1 .864
N
a
—O
a
1 .142
MW
1 .202
N
b
—O
c
1 .217
105 .05
∠N
a
N
b
O
b
112 .72
∠N
a
N
b
O
c
117 .47
N
2
O
4
O
O
N N
O
O
N—N
1 .782
N—O
1 .190
∠ONO
135 .4
ED
D
2h
NaBH
4
H
a
(BH
3
)Na (C
3v
)
B—H
(BH
3
)
1 .278
B—H
a
1 .238
Na—B
2 .308
MW
NaBr
Na—Br (r
e
)
2 .5020
MW
NaCl
Na—Cl (r
e
)
2 .3609
MW
NaF
Na—F (r
e
)
1 .9260
MW
NaH
Na—H (r
e
)
1 .8873
UV
NaI
Na—I (r
e
)
2 .7115
MW
NaO
Na—O (r
e
)
2 .05155
UV
Na
2
Na—Na (r
e
)
3 .0789
UV
NbCl
4
T
d
Nb—Cl
2 .279
ED
NbCl
5
D
3h
Nb—Cl
ax
2 .307
Nb—Cl
eq
2 .276
ED
NbO
Nb—O (r
e
)
1 .691
UV
NdI
3
C
3v
Nd—I
2 .879
ED
NiBr
Ni—Br
2 .1963
UV
NiBr
2
linear
Ni—Br
2 .201
ED
NiCl
2
linear
Ni—Cl
2 .076
ED
NiF
2
linear
Ni—F
1 .729
[Ni—F (r
e
)]
1 .715
ED
NiH
Ni—H (r
e
)
1 .476
UV
NiI
Ni—I
2 .348
UV
NpF
6
O
h
Np—F
1 .982
ED
OF
O—F (r
e
)
1 .3579
LMR
OF
2
C
2v
O—F (r
e
)
1 .4053
∠FOF (θ
e
)
103 .07
MW
OH
O—H (r
e
)
0 .96966
UV
O(SiH
3
)
2
Si—H
1 .486
Si—O
1 .634
∠SiOSi
144 .1
ED
O
2
O—O (r
e
)
1 .2074
MW
9-26
structure of Free molecules in the gas phase
6679X_S09.indb 26
4/11/08 3:45:33 PM
Formula
Structure
Bond distances in Å and angles in degrees
Method
O
2
F
2
C
2
O—O
1 .217
F—O
1 .575
∠OOF
109 .5
MW
dihedral angle
of internal
rotation
87 .5
O
3
C
2v
O—O (r
e
)
1 .2716
∠OOO (θ
e
)
117 .47
MW
OsF
6
O
h
Os—F
1 .832
ED
OsO
4
T
d
Os—O
1 .712
ED
PBr
3
C
3v
P—Br
2 .220
∠BrPBr
101 .0
ED
PCl
P—Cl (r
e
)
2 .01461
UV
PCl
3
C
3v
P—Cl
2 .039
∠ClPCl
100 .27
ED
PCl
5
Cl
b
Cl
b
Cl
b
P
Cl
a
Cl
a
P—Cl
a
2 .124
P—Cl
b
2 .020
ED
D
3h
PF
P—F (r
e
)
1 .5896
UV
PF
3
C
3v
P—F
1 .570
∠FPF
97 .8
ED, MW
PF
5
D
3h
P—F
eq
1 .534
P—F
ax
1 .577
ED
PH
P—H (r
e
)
1 .4223
LMR
PH
2
P—H
1 .418
∠HPH
91 .70
UV
PH
3
c
3v
P—H
1 .4200
∠HPH
93 .345
MW
PN
N—P (r
e
)
1 .49087
MW
PO
O—P (r
e
)
1 .4759
UV
POCl
3
C
3v
P—O
1 .449
P—Cl
1 .993
∠ClPCl
103 .3
ED
POF
3
C
3v
P—O
1 .436
P—F
1 .524
∠FPF
101 .3
ED, MW
P
2
P—P (r
e
)
1 .8931
UV
P
2
F
4
trans conformer
P—F
1 .587
P—P
2 .281
∠FPF
99 .1
P
2
F
4
∠PPF
95 .4
P
4
T
d
P—P
2 .21
ED
P
4
O
6
T
d
P—O
1 .638
∠POP
126 .4
ED
PbBr
2
bent
Pb—Br (r
e
)
2 .598
ED
PbCl
2
bent
Pb—Cl (r
e
)
2 .444
ED
PbCl
4
T
d
Pb—Cl
2 .369
ED
PbF
Pb—F (r
e
)
2 .0575
UV
PbF
2
bent
Pb—F (r
e
)
2 .041
ED
PbH
Pb—H (r
e
)
1 .839
UV
PbI
2
bent
Pb—I (r
e
)
2 .807
ED
PbO
Pb—O (r
e
)
1 .9218
MW
PbS
Pb—S (r
e
)
2 .2869
MW
PbSe
Pb—Se (r
e
)
2 .4022
MW
PbTe
Pb—Te (r
e
)
2 .5950
MW
PrCl
3
C
3v
Pr—Cl
2 .554
ED
PrF
3
C
3v
Pr—F
2 .091
ED
PrI
3
C
3v
Pr—I
2 .901
∠IPrI
113
ED
PtC
Pt—C (r
e
)
1 .6767
UV
PtH
Pt—H (r
e
)
1 .52852
UV
PtN
Pt—N (r
e
)
1 .682
MW
PtO
Pt—O (r
e
)
1 .7273
UV
PtS
Pt—S (r
e
)
2 .03983
MW
PtSi
Pt—Si (r
e
)
2 .0612
MW
PuF
6
O
h
Pu—F
1 .972
ED
RbBr
Rb—Br (r
e
)
2 .9447
MW
RbCl
Rb—Cl (r
e
)
2 .7869
MW
RbF
Rb—F (r
e
)
2 .2703
MW
RbH
Rb—H (r
e
)
2 .367
UV
RbI
Rb—I (r
e
)
3 .1768
MW
RbO
Rb—O (r
e
)
2 .25420
UV
RbOH
linear; large amplitude
bending mode
Rb—O
2 .301
O—H
0 .957
MW
ReClO
3
C
3v
Re—O
1 .702
Re—Cl
2 .229
∠ClReO
109 .4
MW
structure of Free molecules in the gas phase
9-27
6679X_S09.indb 27
4/11/08 3:45:34 PM
Formula
Structure
Bond distances in Å and angles in degrees
Method
ReClO
4
C
4v
Re—O
1 .663
Re—Cl
2 .270
∠ClReO
105 .5
ED
ReCl
5
D
3h
Re—Cl
eq
2 .238
Re—Cl
ax
2 .263
ED
ReF
6
O
h
Re—F
1 .832
ED
ReF
7
pseudorotation
Re—F
1 .835
ED
RhB
Rh—B
1 .691
UV
RhC
Rh—C
1 .614
UV
RhS
Rh—S
2 .059
UV
RuO
4
T
d
Ru—O
1 .706
ED
SCl
2
C
2v
S—Cl
2 .006
∠ClSCl
103 .0
ED
SF
S—F (r
e
)
1 .6006
MW
SF
2
S—F
1 .5921
∠FSF
98 .20
MW
SF
6
O
h
S—F
1 .561
ED
SH
S—H (r
e
)
1 .34066
UV
SO
S—O (r
e
)
1 .4811
MW
SOCl
2
S—O
1 .44
S—Cl
2 .072
MW
∠ClSCl
97 .2
∠OSCl
108 .0
SOF
2
S—O
1 .420
S—F
1 .583
ED
∠FSF
92 .2
∠OSF
106 .2
SOF
4
O
F
a
S F
a
F
b
F
b
C
2v
S—O
1 .403
S—F
a
1 .575
S—F
b
1 .552
ED
∠OSF
a
90 .7
∠OSF
b
124 .9
∠F
a
SF
b
89 .6
∠F
b
SF
b
110 .2
SO
2
S—O (r
e
)
1 .4308
∠OSO (θ
e
)
119 .329
MW
SO
2
Cl
2
C
2v
S—Cl
2 .011
S—O
1 .404
ED
∠ClSCl
100 .0
∠OSO
123 .5
SO
2
F
2
C
2v
S—F
1 .530
S—O
1 .397
ED
∠FSF
97
∠OSO
123
SO
3
D
3h
S—O
1 .4198
IR
S(SiH
3
)
2
Si—S
2 .136
Si—H
1 .494
∠SiSSi
97 .4
ED
S
2
S—S (r
e
)
1 .8892
R
S
2
Br
2
C
2
S—Br
2 .24
S—S
1 .98
∠SSBr
105
ED
dihedral angle
of internal
rotation
83 .5
S
2
Cl
2
C
2
S—Cl
2 .057
S—S
1 .931
∠SSCl
108 .2
ED
dihedral angle
of internal
rotation
84 .1
S
2
O
2
planar cis form
S—S
2 .025
S—O
1 .458
∠OSS
112 .8
MW
S
8
S
S
S
S
S
S
S
S
S—S
2 .07
∠SSS
105
(D
4d
)
ED
SbBr
3
C
3v
Sb—Br
2 .490
∠BrSbBr
98 .2
ED
SbCl
3
C
3v
Sb—Cl
2 .334
∠ClSbCl
97 .1
ED
SbCl
5
D
3h
Sb—Cl
eq
2 .277
Sb—Cl
ax
2 .338
ED
SbF
Sb—F (r
e
)
1 .918
UV
SbF
3
C
3v
Sb—F
1 .880
∠FSbF
94 .9
ED
SbH
Sb—H
1 .723
UV
SbH
3
C
3v
Sb—H
1 .704
∠HSbH
91 .6
MW
SbI
3
C
3v
Sb—I
2 .721
∠ISbI
99 .0
ED
SbO
Sb—O (r
e
)
1 .826
UV
SbP
Sb—P (r
e
)
2 .20544
MW
ScCl
3
D
3h
Sc—Cl
2 .291
ED
ScF
Sc—F (r
e
)
1 .788
UV
ScF
3
D
3h
Sc—F
1 .847
ED
SeF
Se—F
1 .742
MW
SeF
6
O
h
Se—F
1 .69
ED
SeH
Se—H (r
e
)
1 .48
UV
SeO
Se—O (r
e
)
1 .6393
MW
9-28
structure of Free molecules in the gas phase
6679X_S09.indb 28
4/11/08 3:45:36 PM
Formula
Structure
Bond distances in Å and angles in degrees
Method
SeOF
2
Se—O
1 .576
Se—F
1 .730
MW
∠OSeF
104 .82
∠FSeF
92 .22
SeO
2
Se—O (r
e
)
1 .6076
∠OSeO (θ
e
)
113 .83
MW
SeO
3
D
3h
Se—O
1 .69
ED
Se
2
Se—Se (r
e
)
2 .1660
UV
Se
6
six-membered ring with
chair conformation
Se—Se
2 .34
∠SeSeSe
102
ED
SiBrF
3
C
3v
Si—F
1 .559
Si—Br
2 .156
∠FSiBr
108 .5
MW
SiBrH
3
C
3v
Si—Br
2 .210
Si—H
1 .486
∠HSiBr
107 .8
MW
SiCl
Si—Cl (r
e
)
2 .058
UV
SiClH
3
C
3v
Si—Cl
2 .049
Si—H
1 .486
∠HSiCl
107 .9
MW
SiCl
4
T
4
Si—Cl
2 .019
ED
SiF
Si—F
1 .6008
UV
SiFH
3
C
3v
Si—F
1 .593
Si—H
1 .486
∠HSiH
110 .63
MW, IR
SiF
2
Si—F (r
e
)
1 .590
∠FSiF (θ
e
)
100 .8
MW
SiF
3
H
C
3v
Si—H ((r
e
)
1 .4468
Si—F (r
e
)
1 .5624
∠HSiF (θ
e
)
110 .64
MW
SiF
4
T
d
Si—F
1 .553
ED
SiH
Si—H (r
e
)
1 .5201
UV
SiH
3
I
C
3v
Si—I
2 .437
Si—H
1 .486
∠HSH
107 .8
MW
SiH
4
T
d
Si—H
1 .4798
IR
SiN
Si—N (r
e
)
1 .572
UV
SiO
Si—O (r
e
)
1 .5097
MW
SiS
Si—S (r
e
)
1 .9293
MW
SiSe
Si—Se (r
e
)
2 .0583
MW
Si
2
Si—Si (r
e
)
2 .246
UV
Si
2
Cl
6
Si—Si
2 .32
Si—Cl
2 .009
∠ClSiCl
109 .7
ED
Si
2
F
6
Si—Si
2 .317
Si—F
1 .564
∠FSiF
108 .6
ED
Si
2
H
6
Si—Si
2 .331
Si—H
1 .492
ED
∠SiSiH
110 .3
∠HSiH
108 .6
SnBr
2
Sn—Br (r
e
)
2 .501
∠BrSnBr
100 .0
ED
SnCl
Sn—Cl (r
e
)
2 .361
UV
SnCl
2
Sn—Cl (r
e
)
2 .335
∠ClSnCl
99 .1
ED
SnCl
4
T
d
Sn—Cl
2 .281
ED
SnF
Sn—F (r
e
)
1 .944
UV
SnH
Sn—H (r
e
)
1 .7815
UV
SnH
4
T
d
Sn—H
1 .711
R, IR
SnI
2
Sn—I (r
e
)
2 .688
ED
SnO
Sn—O (r
e
)
1 .8325
MW,UV
SnS
Sn—S (r
e
)
2 .2090
MW
SnSe
Sn—Se (r
e
)
2 .3256
MW
SnTe
Sn—Te (r
e
)
2 .5228
MW
SrBr
Sr—Br (r
e
)
2 .7352
UV
SrBr
2
quasilinear
Sr—Br
2 .783
ED
SrCl
2
Sr—Cl
2 .630
∠ClSrCl
155
ED
SrF
Sr—F (r
e
)
2 .0754
UV
SrH
Sr—H (r
e
)
2 .1456
UV
SrI
Sr—I (r
e
)
2 .9436
UV
SrI
2
linear
Sr—I
3 .01
ED
SrO
Sr—O (r
e
)
1 .9198
MW
SrOH
Sr—O
2 .111
O—H
0 .922
UV
SrS
Sr—S (r
e
)
2 .4405
UV
TaBr
5
D
3h
Ta—Br
eq
2 .412
Ta—Br
ax
2 .473
ED
TaCl
5
D
3h
Ta—Cl
eq
2 .268
Ta—Cl
ax
2 .315
ED
TaO
Ta—O (r
e
)
1 .6875
UV
TbCl
3
C
3v
Tb—Cl
2 .476
ED
TeF
6
O
h
Te—F
1 .815
ED
TeH
Te—H
1 .74
UV
TeO
Te—O (r
e
)
1 .825
UV
Te
2
Te—Te (r
e
)
2 .5574
UV
ThCl
4
T
d
Th—Cl
2 .567
ED
structure of Free molecules in the gas phase
9-29
6679X_S09.indb 29
4/11/08 3:45:37 PM
Formula
Structure
Bond distances in Å and angles in degrees
Method
ThF
4
T
d
Th—F
2 .124
ED
ThO
Th—O (r
e
)
1 .84032
UV
TiBr
4
T
d
Ti—Br
2 .339
ED
TiCl
3
D
3h
Ti—Cl
2 .208
ED
TiCl
4
T
d
Ti—Cl
2 .170
ED
TiF
Ti—F
1 .8342
MW
TiF
4
T
d
Ti—F
1 .756
ED
TiI
3
D
3h
Ti—I
2 .568
ED
TiI
4
T
d
Ti—I
2 .546
ED
TiO
Ti—O (r
e
)
1 .620
UV
TiS
Ti—S (r
e
)
2 .0825
UV
TlBr
Tl—Br (r
e
)
2 .6182
MW
TlCl
Tl—Cl (r
e
)
2 .4848
MW
TlF
Tl—F (r
e
)
2 .0844
MW
TlH
Tl—H (r
e
)
1 .870
UV
TlI
Tl—I (r
e
)
2 .8137
MW
UCl
4
T
d
U—Cl
2 .506
ED
UCl
6
O
h
U—F
2 .46
ED
UF
4
T
d
U—F
2 .059
ED
UF
6
O
h
U—F
2 .000
ED
UI
3
C
3v
U—I
2 .88
ED
VCl
3
O
C
3v
V—O
1 .570
V—Cl
2 .142
∠ClVCl
111 .3
ED, MW
VBr
4
T
d
(Jahn-Teller effect)
V—Br
2 .276
ED
VCl
4
T
d
(Jahn-Teller effect)
V—Cl
2 .138
ED
VF
3
D
3h
V—F
1 .751
ED
VF
5
V—F
eq
1 .709
V—F
ax
1 .736
ED
VMo
V—Mo
1 .876
UV
VO
V—O (r
e
)
1 .5893
UV
WClF
5
F
b
F
b
F
b
F
a
W
F
b
Cl
W—F (av .)
1 .836
W—Cl
2 .251
∠F
a
WF
b
88 .7
MW
WCl
5
D
3h
W—Cl
eq
2 .243
W—Cl
ax
2 .293
ED
WCl
6
O
h
W—Cl
2 .290
ED
WF
4
O
C
4v
W—O
1 .666
W—F
1 .847
∠FWF
86 .2
ED
WF
6
O
h
W—F
1 .833
ED
XeF
2
linear
Xe—F
1 .977
IR
XeF
4
D
4h
Xe—F
1 .94
ED
XeF
6
O
h
Xe—F
1 .890
ED
XeO
4
T
d
Xe—O
1 .736
ED
YCl
Y—Cl
2 .385
UV
YCl
3
Y—Cl
2 .437
ED
YF
Y—F (r
e
)
1 .9257
UV
YI
3
Y—I
2 .817
ED
YO
Y—O (r
e
)
1 .790
UV
YbBr
Yb—Br (r
e
)
2 .6454
UV
YbH
Yb—H (r
e
)
2 .0526
UV
ZnBr
2
linear
Zn—Br
2 .204
ED
ZnCl
2
linear
Zn—Cl
2 .072
ED
ZnF
Zn—F (r
e
)
1 .7677
MW
ZnF
2
linear
Zn—F
1 .742
[Zn—F (r
e
)]
1 .729
ED
ZnH
Zn—H (r
e
)
1 .5949
UV
ZnI
2
linear
Zn—I
2 .401
ED
ZrBr
4
T
d
Zr—Br
2 .465
ED
ZrCl
4
T
d
Zr—Cl
2 .328
ED
ZrF
4
T
d
Zr—F
1 .902
ED
ZrI
4
T
d
Zr—I
2 .660
ED
ZrO
Zr—O (r
e
)
1 .7116
UV
9-30
structure of Free molecules in the gas phase
6679X_S09.indb 30
4/11/08 3:45:38 PM
part 2. molecules containing carbon
Compound
Structure
Bond distances in Å and angles in degrees
Method
Acetaldehyde
H
O
C
b
H
3
C
a
C
a
—O
1 .210
C
a
—C
b
1 .515
ED, MW
C
a
—H
1 .128
C
b
—H
1 .107
∠C
b
C
a
O
124 .1
∠C
b
C
a
H
115 .3
∠HC
b
H
109 .8
Acetamide
CH
3
CONH
2
C—O
1 .220
C—N
1 .380
ED
C—C
1 .519
N—H
1 .022
C—H
1 .124
∠CCN
115 .1
∠NCO
122 .0
Acetic acid
H
O
b
O
a
C
CH
3
C—C
1 .520
C—O
a
1 .214
C—O
b
1 .364
ED
C—H
1 .10
∠CCO
a
126 .6
∠CCO
b
110 .6
Acetone
(CH
3
)
2
CO
C—C
1 .520
C—O
1 .213
C—H
1 .103
ED, MW
Symmetry axis of each CH
3
is
tilted 2° from the C—C bond
∠CCC
116 .0
∠HCH
108 .5
Acetonitrile
CH
3
CN (C
3v
)
C—N
1 .159
C—C
1 .468
C—H
1 .107
ED, MW
∠CCH
109 .7
Acetonitrile-N-oxide
CH
3
CNO (C
3v
)
C—C
1 .442
C—N
1 .169
N—O
1 .217
MW
Acetyl chloride
CH
3
COCl
C—C
1 .506
C—O
1 .187
C—H
1 .105
ED, MW
C—Cl
1 .798
∠HCH
108 .6
∠OCCl
121 .2
∠CCCl
111 .6
Acetylene
HC≡CH
C—C (r
e
)
1 .203
C—H (r
e
)
1 .060
IR
Acrolein
H
C
b
C
a
H
H
O
C
c
H
(planar s-trans form)
C
a
—C
b
1 .345
C
b
—C
c
1 .484
C
c
—O
1 .217
ED, MW
C
a
—H
1 .10
C
c
—H
1 .13
∠HC
c
C
b
114
∠CaCbCc
120 .3
∠C
b
C
c
O
123 .3
Other CCH
(av .)
122
Acrylonitrile
C
a
—C
b
1 .343
C
b
—C
c
1 .438
C
c
—N
1 .167
ED, MW
C
a
—H
1 .114
∠C
b
C
c
N
178
∠C
a
C
b
C
c
121 .7
∠HCC
120
Allene
CH
2
=C=CH
2
C—C
1 .3084
C—H
1 .087
∠HCH
118 .2
IR
Aniline
C
6
H
5
NH
2
C—C
1 .392
C—N
1 .431
N—H
0 .998
MW
∠HNH
113 .9
dihedral angle
between NH
2
plane and N—
C bond
140 .6
Azetidine
NH
CH
2
CH
2
CH
2
C—N
1 .482
C—C
1 .553
ED
C—H
1 .107
N—H
1 .03
∠CCC
86 .9
∠CCN
85 .8
∠CNC
92 .2
dihedral angle
between CCC
and CNC
planes
147
Benzamide
C
6
H
5
—C
a
ONH
2
C—C (ring)
1 .401
C (ring)—C
a
1 .511
C
a
—O
1 .225
ED
C—H
1 .112
C—N
1 .380
∠CCN
117 .8
∠CCC (ring)
120(ass .) ∠CCO
121 .2
Benzene
C
6
H
6
C—C
1 .399
C—H
1 .101
ED, IR
p-Benzoquinone
C
a
—O
1 .225
C
a
—C
b
1 .481
C
b
—C
b
1 .344
ED
∠C
b
C
a
C
b
118 .1
structure of Free molecules in the gas phase
9-31
6679X_S09.indb 31
4/11/08 3:45:41 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Bicyclo[1 .1 .0]butane
H
c
H
c
H
a
C
b
C
b
H
b
C
a
C
a
H
b
H
a
C
a
—C
a
1 .497
C
a
—C
b
1 .498
C
a
—H
a
1 .071
MW
C
b
—H
b
1 .093
C
b
—H
c
1 .093
∠H
b
C
b
H
c
115 .6
∠C
b
C
a
H
a
130 .4
∠C
a
C
a
H
a
128 .4
∠C
a
C
b
C
a
60 .0
dihedral angle
between the
two C
a
C
a
C
b
planes
121 .7
Bicyclo[2 .2 .1]heptane
See preceeding structure
C
a
—C
b
1 .54
C
b
—C
b
1 .56
C
a
—C
c
1 .56
ED
C
7
H
12
C—C (av .)
1 .549
∠C
a
C
c
C
a
93 .1
dihedral angle
between the
two C
a
C
b
C
b
C
a
planes
113 .1
Bicyclo[2 .2 .0]hexa-2,5-
diene
C
b
H
C
b
H
H
C
a
C
a
H
HC
b
HC
b
C
b
—C
b
1 .345
C
a
—C
a
1 .574
C
a
—C
b
1 .524
ED
dihedral angle
between the
two C
a
C
b
C
b
C
a
planes
117 .3
Bicyclo[2 .2 .2]octane
HC
a
(C
b
H
2
C
b
H
2
)
3
C
a
H
C
a
—C
b
1 .54
C
b
—C
b
1 .55
C—C (av .)
1 .542
ED
large-amplitude torsional
motion about D
3h
symmetry
axis
∠C
a
C
b
C
b
109 .7
Bicyclo[1 .1 .1]pentane
C
5
H
8
C—C
1 .557
∠CCC
74 .2
ED
Bicyclo[2 .1 .0]pentane
C
c
H
2
C
a
H
C
b
H
2
C
a
H
C
b
H
2
C
a
—C
a
1 .536
C
b
—C
b
1 .565
C
a
—C
c
1 .507
MW
C
a
—C
b
1 .528
dihedral angle
between the
C
a
C
a
C
b
C
b
and
C
a
C
a
C
c
planes
112 .7
Biphenyl
C—C (intra-
ring)
1 .396
C—C (inter-
ring)
1 .49
ED
torsional
dihedral angle
≈40
4,4´-Bipyridyl
C—C (inter-
ring)
1 .465
C—C (intra-
ring)
1 .375
C—N (intra-
ring)
1 .375
ED
torsional
dihedral angle
between the
two rings
≈37
Bis(cyclopentadienyl)
beryllium
(C
5
H
5
)
2
Be (C
5v
)
Be—(cyclopen-
tadienyl plane)
1 .470,
1 .92
C—C
1 .423
ED
Bis(cyclopentadienyl) iron (C
5
H
5
)
2
Fe (D
5h
)
Fe—C
2 .064
C—C
1 .440
C—H
1 .104
ED
Bis(cyclopentadienyl) lead (C
5
H
5
)
2
Pb (D
5h
)
Pb—C
2 .79
C—C
1 .430
ED
dihedral angle
between the
two C
5
H
5
planes
40~50
(The two
rings are
not
parallel)
Bis(cyclopentadienyl)
manganese
(C
5
H
5
)
2
Mn (D
5h
)
Mn—C
2 .383
C—C
1 .429
ED
Bis(cyclopentadienyl)
nickel
(C
5
H
5
)
2
Ni (D
5h
)
Ni—C
2 .196
C—C
1 .430
ED
Bis(cyclopentadienyl)
ruthenium
(C
5
H
5
)
2
Ru (D
5h
)
Ru—C
2 .196
C—C
1 .439
ED
Bis(cyclopentadienyl) tin
(C
5
H
5
)
2
Sn (D
5h
)
Sn—C
2 .71
C—C
1 .431
C—H
1 .14
ED
Borane carbonyl
BH
3
CO (C
3v
)
C—O
1 .131
B—C
1 .540
B—H
1 .194
MW
∠BCO
180
∠HBH
113 .9
9-32
structure of Free molecules in the gas phase
6679X_S09.indb 32
4/11/08 3:45:44 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Bromobenzene
C
d
H
C
c
H
C
b
H
HC
c
HC
b
C
a
Br
C
a
—C
b
1 .42
C
b
—C
c
1 .375
C
c
—C
d
1 .401
MW
C—Br
1 .85
C—H
1 .072
∠C
b
C
a
C
b
117 .4
Bromochloroacetylene
ClC≡CBr
C—Cl
1 .636
C—Br
1 .784
C—C
1 .206
ED
Bromoiodoacetylene
IC≡CBr
C—I
1 .972
C—Br
1 .795
C—C
1 .206
ED
Bromomethane
CH
3
Br
C—Br (r
e
)
1 .933
C—H (r
e
)
1 .086
∠HCH (θ
e
)
111 .2
MW, IR
Bromomethyl
CH
2
Br (planar)
C—Br
1 .848
C—H
1 .084
∠HCH (ass .) 124 .5 MW
Bromomethylene
CHBr (bent)
C—Br
1 .857
C—H
1 .110
∠HCH
101 .0
UV
Bromomethylmercury
CH
3
HgBr (C
3v
)
C—Hg
2 .07
Hg—Br
2 .406
MW
1,3-Butadiene
C
a
H
2
C
b
H C
b
H
C
a
H
2
(C
2h
)
C
a
—C
b
1 .349
C
b
—C
b
1 .467
C—H (av .)
1 .108
ED
∠CCC
124 .4
∠C
b
C
a
H
120 .9
1,3-Butadiyne
HC
a
≡C
b
C
b
≡C
a
H
(linear)
C
a
—C
b
1 .218
C
b
—C
b
1 .384
C—H
1 .09
ED
Butane
CH
3
CH
2
CH
2
CH
3
C—C
1 .531
C—H
1 .117
∠CCC
113 .8
ED
∠CCH
111 .0
dihedral angle
for the gauche
conformer
65
2,3-Butanedione
CH
3
COCOCH
3
C—O
1 .215
C—C (av .)
1 .524
C—H
1 .108
ED
trans conformer
∠CCC
116 .2
∠CCO
119 .5
2-Butanone
C
d
H
3
C
b
H
2
C
c
O
C
a
H
3
C—C (av .)
1 .518
C
c
—O
1 .219
C—H (av .)
1 .102
ED
trans conformer
∠C
a
C
b
C
c
113 .5
∠C
b
C
c
O
121 .9
∠C
d
C
c
O
121 .9
1,2,3-Butatriene
H
2
C
a
=C
b
=C
b
=C
a
H
2
(D
2h
)
C
a
—C
b
1 .32
C
b
—C
b
1 .28
C—H
1 .08
ED
cis-2-Butene
C
a
H
3
C
b
H=C
b
HC
a
H
3
C
a
—C
b
1 .506
C
b
—C
b
1 .346
∠C
a
C
b
C
b
125 .4
ED
trans-2-Butene
C
a
H
3
C
b
H=C
b
HC
a
H
3
C
a
—C
b
1 .508
C
b
—C
b
1 .347
∠C
a
C
b
C
b
123 .8
ED
1-Buten-3-yne
H
d
C
d
C
c
H
c
C
b
C
a
H
b
H
a
C
a
—C
b
1 .344
C
b
—C
c
1 .434
C
c
—C
d
1 .215
ED, MW
C
a
—H
a
1 .11
C
d
—H
d
1 .09
∠C
a
C
b
C
c
123 .1
∠C
b
C
c
C
d
178
∠H
a
C
a
C
b
119
∠H
b
C
a
C
b
122
∠H
c
C
b
C
a
122
∠C
c
C
d
H
d
182
tert-Butyl chloride
(CH
3
)
3
CCl
C—C
1 .528
C—Cl
1 .828
C—H
1 .102
ED, MW
∠CCCl
107 .3
∠CCH
110 .8
∠CCC
111 .6
2-Butyne
C
a
H
3
—C
b
≡C
b
—C
a
H
3
C
b
—C
b
1 .214
C
a
—C
b
1 .468
C—H
1 .116
ED
∠C
b
C
a
H
110 .7
Carbon dimer
C
2
C—C (r
e
)
1 .2425
UV
Carbon trimer
C
3
(linear)
C—C
1 .277
UV
Carbon dioxide
CO
2
(linear)
C—O (r
e
)
1 .1600
IR
Carbon disulfide
CS
2
(linear)
C—S (r
e
)
1 .5526
IR
Carbon monobromide
CBr
C—Br
1 .8209
UV
Carbon monoselenide
CSe
C—Se (r
e
)
1 .67609
UV
Carbon monosulfide
CS
C—S (r
e
)
1 .5349
MW
Carbon monoxide
CO
C—O (r
e
)
1 .1283
MW
Carbon oxyselenide
OCSe (linear)
C—O
1 .159
C—Se
1 .709
MW
Carbon oxysulfide
OCS (linear)
C—O (r
e
)
1 .1578
C—S (r
e
)
1 .5601
MW
Carbon phosphide
CP
C—P (r
e
)
1 .562
UV
Carbon sulfide selenide
SCSe (linear)
C—S
1 .553
C—Se
1 .693
MW
Carbon sulfide telluride
SCTe (linear)
C—S
1 .557
C—Te
1 .904
MW
Carbon suboxide
OCCCO (linear)
C—C
1 .289
C—O
1 .163
ED
structure of Free molecules in the gas phase
9-33
6679X_S09.indb 33
4/11/08 3:45:47 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Carbonyl bromide
COBr
2
C—O
1 .178
C—Br
1 .923
∠BrCBr
112 .3
ED, MW
Carbonyl chloride
COCl
2
C—O
1 .179
C—Cl
1 .742
∠ClCCl
111 .8
ED, MW
Carbonyl chloride fluoride COClF
C—O
1 .173
C—F
1 .334
C—Cl
1 .725
ED, MW
∠ClCO
127 .5
∠FCCl
108 .8
Carbonyl dicyanide
CO(CN)
2
C—O
1 .209
C—C
1 .466
C—N
1 .153
ED, MW
∠CCC
115
∠CCN
180
Carbonyl fluoride
COF
2
C—O
1 .172
C—F
1 .3157
∠FCF
107 .71 ED, MW
Chloroacetylene
HC≡CCl
C—Cl
1 .6368
C—C
1 .2033
C—H
1 .0550 MW
Chlorobenzene
C
6
H
5
Cl
C—C
1 .400
C—Cl
1 .737
C—H
1 .083
ED
Chlorocyanoacetylene
ClC≡C—CN
C—Cl
1 .624
C—N
1 .160
C—C
1 .205
ED
C—CN
1 .362
Chloroethane
C—C
1 .528
C—Cl
1 .802
C—H
1 .103
ED, MW
∠CCCl
110 .7
∠H
b
C
b
H
b
109 .8
∠H
a
C
a
H
a
109 .2
∠C
b
C
a
H
a
110 .6
C
a
—H
a
= C
b
—
H
b
(ass .)
2-Chloroethanol
ClCH
2
CH
2
OH
C—O
1 .413
C—C
1 .519
C—Cl
1 .801
ED
(gauche)
O—H
1 .033 C—H
1 .093
∠CCCl
110 .7
∠CCO 113 .8
dihedral
angle of
internal
rotation
62 .4
Chloroiodoacetylene
ClC≡CI
C—Cl
1 .63
C—I
1 .99
C—C
1 .209
(ass)
MW
Chloromethane
CH
3
Cl
C—Cl
1 .785
C—H
1 .090
∠HCH
110 .8
MW, IR
Chloromethylidyne
CCl
C—Cl
1 .6512
UV
Chloromethylmercury
CH
3
HgCl (C
3v
)
C—Hg
2 .06
Hg—Cl
2 .282
MW
trans-1-Chloropropene
CH
3
CH=CHCl
C—Cl
1 .728
∠CCCl
121 .9
MW
3-Chloropropene
CH
2
ClCH=CH
2
cis conformer
C—Cl
1 .811
∠CCCl
115 .2
MW
skew conformer
C—Cl
1 .809
∠CCCl
109 .6
dihedral
angle of
internal
rotation
122 .4
Chlorotrifluoromethane
CClF
3
(C
3v
)
C—Cl
1 .752
C—F
1 .325
∠FCF
108 .6
ED, MW
Chromium carbonyl
Cr (CO)
6
Cr—C
1 .92
C—O
1 .16
∠CrCO
180
ED
Cobalt cyanide
CoC≡N
Co—C
1 .883
C—N
1 .131
MW
Copper cyanide
CuC≡N
Cu—C
1 .832
C—N
1 .158
MW
Cyanamide
H
2
N
a
CN
b
N
a
—C
1 .346
C—N
b
1 .160
N—H
1 .00
MW
∠HNH
114
dihedral angle
between NH
2
plane and N—
C bond
142
Cyanide
CN
C—N (r
e
)
1 .1718
MW
Cyanoacetylene
HC
a
≡C
b
—C
c
N
C
a
—C
b
1 .205
C
b
—C
c
1 .378
C—H
1 .058
MW
C
c
—N
1 .159
Cyanocyclopropane
C
3
H
5
C
a
N
C—C (ring)
1 .513
C— C
a
1 .472
C
a
—N
1 .157
MW
C—H
1 .107
∠C
a
CH
119 .6
∠HCH
114 .6
Cyanogen
N≡C—C≡N (linear)
C—N
1 .163
C—C
1 .393
ED
Cyanogen azide
N≡C—N=N≡N
C—N
1 .312
N=N
1 .252
N≡N
1 .133
MW
(planar)
C≡N
1 .164
∠CNN
120 .2
∠NCN
176 .0
Cyanogen bromide
BrCN (linear)
C—N (r
e
)
1 .157
C—Br (r
e
)
1 .790
MW
Cyanogen chloride
ClCN (linear)
C—Cl (r
e
)
1 .629
C—N (r
e
)
1 .160
MW
Cyanogen fluoride
FCN (linear)
C—F
1 .262
C—N
1 .159
MW
Cyanogen iodide
ICN (linear)
C—I
1 .995
C—N
1 .159
MW
1-Cyano-2-propyne
HC
a
≡C
b
C
c
H
2
C
d
≡N
C
a
—C
b
1 .207
(ass .)
C
b
—C
c
(ass .)
1 .465
C
c
—C
d
1 .454
MW
C
d
—N
1 .159
(ass .)
C
a
—H(ass .)
1 .057
C
c
—H(ass .) 1 .090
∠C
b
C
c
C
d
113 .4
∠HC
c
H
109 .4
(ass .)
∠C
b
C
c
H
111 .3
9-34
structure of Free molecules in the gas phase
6679X_S09.indb 34
4/11/08 3:45:48 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Cyclobutane
(CH
2
)
4
C—C
1 .555
C—H
1 .113
ED
dihedral angle
between the
two CCC planes
145
Cyclobutanone
C
a
O
C
b
H
2
C
c
H
2
C
b
H
2
C
a
—C
b
1 .527
C
b
—C
c
1 .556
MW
∠C
b
C
a
C
b
93 .1
∠C
a
C
b
C
c
88 .0
Cyclobutene
C
a
—C
a
1 .566
C
b
—C
b
1 .342
C
a
—C
b
1 .517 MW
C
a
—H
1 .094
C
b
—H
1 .083
∠C
a
C
b
C
b
94 .2
∠C
b
C
b
H
133 .5
∠HC
a
H
109 .2
∠C
a
C
a
H
114 .5
∠C
a
C
a
C
b
85 .8
dihedral
angle
between
CH
2
plane
and
C
a
—C
a
bond
135 .8
2,4,6-Cycloheptatrien-1-
one
C
b
H
C
c
H
C
d
H
C
d
H
HC
c
HC
b
C
a
O
(C
2v
)
C
a
—C
b
1 .45
C
b
—C
c
1 .36
C
c
—C
d
1 .46
ED
C
d
—C
d
1 .34
C
a
—O
1 .23
∠C
b
C
a
C
b
122
∠C
a
C
b
C
c
133
∠C
b
C
c
C
d
126
∠C
c
C
d
C
d
130
Cyclohexane
C
6
H
12
(chair form)
C—C
1 .536
C—H
1 .119
∠CCC
111 .3
ED
Cyclohexene
C
b
H
2
C
c
H
2
C
c
H
2
H
2
C
b
C
a
H
HC
a
half-chair form (C
2
)
C
a
—C
a
1 .334
C
a
—C
b
1 .50
C
b
—C
c
1 .52
ED
C
c
—C
c
1 .54
∠C
a
C
a
C
b
123 .4
∠C
a
C
b
C
c
112 .0
∠C
b
C
c
C
c
110 .9
Cyclooctatetraene
tub form (D
2d
)
C
a
—C
b
1 .476
C
a
—C
a
1 .340
C
b
—C
b
1 .340
ED
C—H
1 .100
∠C
b
C
a
C
a
126 .1
∠C
a
C
b
C
b
126 .1
dihedral angle
between
C
a
C
a
C
a
C
a
and
C
a
C
b
C
b
C
a
planes
136 .9
1,3-Cyclopentadiene
HC
c
HC
b
C
c
H
C
b
H
C
a
H
2
C
a
—C
b
1 .509
C
b
—C
c
1 .342
C
c
—C
c
1 .469
MW
∠C
a
C
b
C
c
109 .3
∠C
b
C
c
C
c
109 .4
∠C
b
C
a
C
b
102 .8
Cyclopentadienylindium
C—In
2 .621
C—C
1 .426
(C
5v
)
ED
Cyclopentane
(CH
2
)
5
C—C
1 .546
C—H
1 .114
∠CCH
111 .7
ED
Cyclopentene
C
c
H C
c
H
H
2
C
b
C
b
H
2
C
a
H
2
C
a
—C
b
1 .546
C
b
—C
c
1 .519
C
c
—C
c
1 .342
ED
∠C
a
C
b
C
c
103 .0
∠C
b
C
c
C
c
110 .0
∠C
b
C
a
C
b
104 .0
dihedral angle
between
C
b
C
a
C
b
and
C
b
C
c
C
c
C
b
planes
151 .2
Cyclopropane
(CH
2
)
3
C—C
1 .512
C—H
1 .083
∠HCH
114 .0
R
structure of Free molecules in the gas phase
9-35
6679X_S09.indb 35
4/11/08 3:45:52 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Cyclopropanone
C
a
O
H
2
C
b
H
2
C
b
C
a
—C
b
1 .475
C
b
—C
b
1 .575
C
a
—O
1 .191
MW
C—H
1 .086
∠C
a
C
b
C
b
57 .7
∠HC
b
H
114
dihedral angle
between CH
2
plane
and C
b
—C
b
bond
151
Cyclopropene
C
b
H
HC
b
C
a
H
2
C
a
—C
b
1 .505
C
b
—C
b
1 .293
C
a
—H
1 .085
MW
C
b
—H
1 .072
∠C
b
C
b
H
150
∠HC
a
H
114 .3
Cyclopropenone
C
b
C
c
C
a
O
H
H
C
a
—C
b
(r
s
)
1 .423
C
b
—C
c
(r
s
)
1 .349
C
a
—O (r
s
)
1 .212
MW
C
2v
C—H (r
s
)
1 .079
∠HC
b
C
c
(θ
s
)
144 .3
C
b
C
a
C
c
(θ
s
)
56 .6
Decalin
C
10
H
18
C—C (av .)
1 .530
C—H (av .)
1 .113
∠CCC (av .) 111 .4 ED
Diazirine
N
N
CH
2
C—N
1 .482
N—N
1 .228
C—H
1 .09
MW
∠HCH
117
Diazoacetonitrile
N
c
N
b
N
a
C
a
C
b
H
C
a
—C
b
1 .424
C
a
—N
a
1 .165
C
b
—N
b
1 .280
MW
N
b
—N
c
1 .132
C—H
1 .082
∠C
a
C
b
H
117
∠C
a
C
b
N
b
119 .5
Diazomethane
CH
2
N
2
C—N
1 .32
N—N
1 .12
C—H
1 .075
MW, IR
∠HCH
126 .0
1,2-Dibromoethane
CH
2
BrCH
2
Br
C—C
1 .506
C—Br
1 .950
C—H
1 .108
ED
∠CCBr
109 .5
∠CCH
110
Dibromomethane
CH
2
Br
2
C—Br
1 .924
C—H
1 .08
∠HCBr
109
ED
∠BrCBr
113 .2
2,2’-Dichlorobiphenyl
C
6
H
4
Cl—C
6
H
4
Cl
C—C (rings)
1 .398
C—C (inter-
ring)
1 .495
C—H
1 .10
ED
C—Cl
1 .732
∠CCCl
121 .4
∠CCH
126
dihedral angle
between the
two rings
(defined as 0 for
cis conformer)
74
trans-1,4-
Dichlorocyclohexane
C
6
H
10
Cl
2
equatorial:
axial:
C—C
1 .530
C—Cl
1 .810
C—H
1 .102
ED
∠CCC
111 .5
∠CCCl
108 .6
∠HCCl
111 .5
∠CCCl
110 .6
∠HCCl
107 .6
1,1-Dichloroethane
CHCl
2
CH
3
C—C
1 .540
C—Cl
1 .766
MW
∠ClCCl
112 .0
∠CCCl
111 .0
1,2-Dichloroethane
CH
2
ClCH
2
Cl
C—C
1 .531
C—Cl
1 .790
C—H
1 .11
ED
∠CCCl
109 .0
∠CCH
113
1,1-Dichloroethene
CH
2
=CCl
2
(C
2v
)
C—C
1 .32 (ass .) C—Cl
1 .73
MW
∠ClCC
123
cis-1,2-Dichloroethene
CHCl=CHCl
C—C
1 .354
C—Cl
1 .718
ED
∠ClCC
123 .8
Dichloromethane
CH
2
Cl
2
C—Cl (r
e
)
1 .765
C—H (r
e
)
1 .087
MW, IR
∠ClCCl (θ
e
)
112 .0
∠HCH (θ
e
)
111 .5
9-36
structure of Free molecules in the gas phase
6679X_S09.indb 36
4/11/08 3:46:02 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
1,2-Dicyanocyclobutene
C
a
C
c
C
a´
H
2
C
b
H
2
C
b´
N
C
c´
N
C
2v
C
a
—C
a’
1 .361
C
a
—C
b
1 .515
C
b
—C
b’
1 .567
MW
C
a
—C
c
1 .420
C
c
—N
1 .157
C
b
—H
1 .088
∠C
a’
C
a
C
b
93 .9
∠C
a
C
b
C
b’
86 .1
∠C
a
C
c
N
178 .2
∠C
b
C
a
C
c
133 .3
∠C
a
C
b
H
114 .7
∠C
a’
C
a
C
b
H
115 .8
Difluorocyanamide
F
2
N
b
—C≡N
a
C—N
a
1 .158
C—N
b
1 .386
N
b
—F
1 .399
MW
∠N
a
CN
b
174
∠CN
b
F
105 .4
∠FN
b
F
102 .8
Difluorocyclopropenone
C
b
C
c
C
a
O
F
F
C
2v
C
a
—C
b
1 .453
C
b
—C
c
1 .324
C
a
—O
1 .192
MW
C—F
1 .314
∠FC
b
C
c
145 .7
Difluorodimethylsilane
(CH
3
)
2
SiF
2
C—Si
1 .844
Si—F
1 .585
C—H (ass .) 1 .093
MW
∠CSiC
115 .2
∠FSiF
106 .1
∠SiCH (ass .) 110 .8
1,1-Difluoroethane
CH
3
CHF
2
C—C
1 .498
C—F
1 .364
C—H (av .)
1 .081
ED
∠CCF
110 .7
∠CCH (av .)
111 .0
dihedral
angle
between
CCF planes
118 .9
1,2-Difluoroethane
CH
2
FCH
2
F
C—C
1 .503
C—F
1 .389
C—H
1 .103
ED
∠CCF
110 .3
∠CCH
111
dihedral
angle of
internal
rotation
109
1,1-Difluoroethene
CH
2
=CF
2
C—C
1 .340
C—F
1 .315
C—H
1 .091
ED, MW
∠CCF
124 .7
∠CCH
119 .0
cis-1,2-Difluoroethene
CHF=CHF
C—C
1 .33
C—F
1 .342
C—H
1 .099
ED, MW
∠CCF
122 .0
∠CCH
124 .1
Difluoromethane
CH
2
F
2
C—F
1 .357
C—H
1 .093
MW
∠FCF
108 .3
∠HCH
113 .7
Dimethoxymethane
C
a
—O
1 .432
C
b
—O
1 .382
C—H (av .)
1 .108
ED
∠COC
114 .6
∠OCO
114 .3
∠OCH
110 .3
Dimethylamine
(CH)
2
NH
C—N
1 .455
N—H
1 .00
C—H
1 .106
ED
∠CNC
111 .8
∠CNH
107
∠NCH
112
∠HCH
107
Dimethylberyllium
(CH
3
)
2
Be (CBeC linear)
C—Be
1 .698
C—H
1 .127
∠BeCH
113 .9
ED
Dimethyl cadmium
(CH
3
)
2
Cd
C—Cd
2 .112
∠HCH
108 .4
R
Dimethyl carbonate
(C
a
H
3
O
a
)
2
C
b
=O
b
C
b
—O
b
1 .209
C
b
—O
a
1 .34
C
a
—O
a
1 .42
ED
∠O
a
C
b
O
a
107
∠C
b
O
a
C
a
114 .5
Dimethylcyanamide
(C
a
H
3
)
2
N
a
—C
b
≡N
b
C
b
—N
b
1 .161
C
a
—N
a
1 .463
C
b
—N
a
1 .338
ED
trans-Dimethyldiazene
CH
3
N=NCH
3
C—N
1 .482
N—N
1 .247
∠CNN
112 .3
ED
∠C
a
NC
a
115 .5
∠C
a
NC
b
116 .0
1,2-Dimethyldiborane
H
t
H
b
H
t
B
B
CH
3
H
b
CH
3
B—B
1 .799
B—C
1 .580
ED
B—H
b
(cis)
1 .358
B—H
b
(trans) 1 .365
B—H
t
1 .24
∠BBC (cis)
122 .6
∠BBC (trans) 121 .8
Dimethyl diselenide
(CH
3
)
2
Se
2
C—Se
1 .95
Se—Se
2 .326
C—H
1 .13
ED
∠CSeSe
98 .9
∠HCSe
108
CSeSeC
dihedral
angle
88
Dimethyl disulfide
(CH
3
)
2
S
2
C—S
1 .816
S—S
2 .029
C—H
1 .105
ED
∠SSC
103 .2
∠SCH
111 .3
CSSC
dihedral
angle
85
structure of Free molecules in the gas phase
9-37
6679X_S09.indb 37
4/11/08 3:46:05 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
S,S´-Dimethyl
dithiocarbonate
O
C
a
H
3
SC
b
SC
a
H
3
syn-syn conformer
C
a
—S
1 .802
C
b
—S
1 .777
C
b
—O
1 .206
ED
∠OCS
124 .9
∠CSC
99 .3
Dimethyl ether
(CH
3
)
2
O
C—O
1 .416
C—H
1 .121
ED
∠COC
112
∠HCH
108
N,N’-Dimethylhydrazine
CH
3
NH—NHCH
3
C—N
1 .46
N—N
1 .42
N—H
1 .03
ED
C—H
1 .12
∠NNC
112
CNNC
dihedral
angle
90
Dimethyl mercury
(CH
3
)
2
Hg
C—Hg
2 .083
C—H
1 .160
(ass .)
Hg···H
2 .71
ED
Dimethylphosphine
(CH
3
)
2
PH
C—P
1 .848
P—H
1 .419
MW
∠CPC
99 .7
∠CPH
97 .0
2,2-Dimethylpropanenitrile (C
c
H
3
)
3
C
b
—C
a
≡N
C
a
—C
b
1 .495
C
b
—C
c
1 .536
C
a
—N
1 .159
MW
∠C
c
C
b
C
c
110 .5
Dimethyl selenide
(CH
3
)
2
Se
C—Se
1 .943
C—H
1 .093
MW
∠CSeC
96 .2
∠SeCH
108 .7
∠HCH
110 .3
Dimethyl silane
(CH
3
)
2
SiH
2
C—Si
1 .868
C—H
1 .089
Si—H
1 .482
MW
∠CSiC
110 .9
∠CSiH
109 .5
∠SiCH
110 .9
∠HSiH
107 .8
Dimethyl sulfide
(CH
3
)
2
S
C—S
1 .802
C—H
1 .090
ED, MW
∠CSC
98 .80
∠HCH
109 .3
Dimethyl sulfone
(CH
3
)
2
SO
2
C—S
1 .771
S—O
1 .435
C—H
1 .114
ED
∠CSC
102
∠OSO
121
Dimethyl sulfoxide
(CH
3
)
2
SO
C—S
1 .799
S—O
1 .485
C—H
1 .081
MW
∠CSC
96 .6
∠CSO
106 .7
∠HCH
110 .3
dihedral angle
between SCC
plane and S—O
bond
115 .5
Dimethyl zinc
(CH
3
)
2
Zn
C—Zn
1 .929
∠HCH
107 .7
R
1,4-Dioxane
CH
2
CH
2
O
CH
2
CH
2
O
chair form
C—C
1 .523
C—O
1 .423
C—H
1 .112
ED
∠CCO
109 .2
∠COC
112 .45
Ethane
C
2
H
6
C—C
1 .5351
C—H
1 .0940
∠CCH
111 .17 MW
staggered conformation
C—C (r
e
)
1 .522
1,2-Ethanediamine
H
2
NCH
2
CH
2
NH
2
C—C
1 .545
C—N
1 .469
C—H
1 .11
ED
gauche conformer
∠CCN
110 .2
dihedral angle
between NCC
and CCN
planes
64
Ethanethiol
C
b
H
3
—C
a
H
2
—SH
C
a
—C
b
1 .530
C
a
—S
1 .829
S—H
1 .350
MW
C
a
—H
1 .090
C
b
—H
1 .093
∠C
a
SH
96 .4
∠C
b
C
a
S
108 .3
∠C
b
C
a
H
109 .6
∠C
a
C
b
H
109 .7
Ethanol
C
b
H
3
C
a
H
2
OH
C—C
1 .512
C—O
1 .431
O—H
0 .971
MW
staggered conformation
C
a
—H
1 .10
C
b
—H
1 .09
∠COH
105
∠CCO
107 .8
∠C
b
C
a
H
111
∠C
a
C
b
H
110
Ethylene
CH
2
=CH
2
C—C (r
s
)
1 .329
C—H (r
s
)
1 .082
∠HCH (θ
s
)
117 .2
MW, IR
Ethyleneimine
H
c
H
c
H
b
C
C
N
H
b
H
a
C—C
1 .481
N—C
1 .475
MW
C—H
1 .084
N—H
1 .016
∠CNC
60 .3
∠H
a
NC
109 .3
∠H
b
CH
c
115 .7
∠H
b
CC
117 .8
∠H
b
CN
118 .3
∠H
c
CC
119 .3
∠H
c
CN
114 .3
Ethyl methyl ether
C
2
H
5
OCH
3
C—C
1 .520
C—O (av .)
1 .418
C—H (av .)
1 .118
ED
∠COC
111 .9
∠OCC
109 .4
∠HCH
109 .0
9-38
structure of Free molecules in the gas phase
6679X_S09.indb 38
4/11/08 3:46:07 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Ethyl methyl sulfide
C
2
H
5
SCH
3
C—C
1 .536
C—S (av .)
1 .813
C—H
1 .111
ED
gauche conformer
∠CSC
97
∠SCC
114 .0
∠HCH
110
Fluoroketene
HFC=C=O
C—C
1 .317
C—O
1 .167
C—F
1 .360
MW
C—H
1 .102
∠CCO
178 .0
∠CCF
119 .5
∠CCH
122 .3
Fluoromethane
CH
3
F
C—F (r
e
)
1 .382
C—H (r
e
)
1 .095
∠HCH (θ
e
)
110 .45 MW, IR
Fluoromethylidyne
CF
C—F (r
e
)
1 .2718
UV
(Fluoromethylidyne)
phosphine
FC≡P
C—F
1 .285
C—P
1 .541
MW
2-Fluoropropane
CH
3
CHFCH
3
C—C
1 .522
C—F
1 .398
MW
∠CCC
113 .4
∠CCF
108 .2
Formaldehyde
H
2
CO
C—O
1 .208
C—H
1 .116
∠HCH
116 .5
MW
Formaldehyde azine
H
2
C=N—N=CH
2
C—N
1 .277
N—N
1 .418
C—H
1 .094
ED
trans conformer
∠CNN
111 .4
∠HCN
120 .7
Formaldehyde oxime
OH
c
N
C
H
b
H
a
C—N
1 .276
N—O
1 .408
O—H
c
0 .956
MW
C—H
a
1 .085
C—H
b
1 .086
∠CNO
110 .2
∠H
a
CN
121 .8
∠H
b
CN
115 .6
∠NOH
c
102 .7
Formamide
H
a
O
C
N
H
b
H
c
C—N
1 .368
C—O
1 .212
C—H
a
1 .125
ED, MW
N—H
1 .027
∠CNH (av .)
119 .2
∠NCO
125 .0
Formic acid
H
O
b
O
a
C
H
(planar)
C—O
a
1 .202
C—O
b
1 .343
O
b
—H
0 .972
MW
C—H
1 .097
∠O
a
CO
b
124 .9
∠HCO
a
124 .1
∠CO
b
H
106 .3
Formic acid dimer
C—O
a
1 .220
C—O
b
1 .323
O
a
···O
b
2 .703
ED
∠O
a
CO
b
126 .2
∠CO
a
O
b
108 .5
Formyl radical
HC=O
C—O
1 .1712
C—H
1 .110
∠HCO
127 .43 MW
Fulvene
C
a
—C
d
1 .349
C
a
—C
b
1 .470
C
b
—C
c
1 .355
MW
C
c
—C
c
1 .476
C
b
—H
1 .078
C
c
—H
1 .080
C
d
—H
1 .13
∠C
b
C
a
C
b
106 .6
∠C
b
C
c
C
c
109
∠C
a
C
b
C
c
107 .7
∠C
a
C
b
H
124 .7
∠C
b
C
c
H
126 .4
∠HC
d
H
117
Furan
H
b
H
b
C
b
C
b
C
a
C
a
H
a
O
H
a
C
a
—C
b
1 .361
C
b
—C
b
1 .431
C
a
—O
1 .362
MW
C
a
—H
a
1 .075
C
b
—H
b
1 .077
∠C
a
C
b
C
b
106 .1
∠C
b
C
a
O
110 .7
∠C
a
OC
a
106 .6
∠C
b
C
b
H
b
128 .0
∠OC
a
H
a
115 .9
Furfural
C
a
—C
e
1 .458
C
e
—O
b
1 .250
C
e
—H
1 .088
MW
∠C
a
C
e
O
121 .6
∠C
e
C
a
C
b
133 .9
∠C
a
C
e
H
116 .9
trans conformer
(with respect to
O
a
and O
b
atoms)
Glycolaldehyde
H
a
O
a
C
a
H
b
H
b
C
b
O
b
H
c
C
a
—C
b
1 .499
C
a
—O
a
1 .437
C
b
—O
b
1 .209
MW
C
a
—H
b
1 .093
C
b
—H
c
1 .102
O
a
—H
a
1 .051
∠C
a
C
b
O
b
122 .7
∠C
b
C
a
O
a
111 .5
∠C
a
C
b
H
c
115 .3
∠C
b
C
a
H
b
109 .2
∠H
b
C
a
H
b
107 .6
∠C
a
O
a
H
a
101 .6
∠H
b
C
a
O
a
109 .7
Glyoxal
CHOCHO
C—C
1 .526
C—O
1 .212
C—H
1 .132
ED, UV
trans conformer
∠CCO
121 .2
∠HCO
112
Hexachloroethane
Cl
3
CCCl
3
C—C
1 .56
C—Cl
1 .769
∠CCCl
110 .0
ED
2,4-Hexadiyne
C
a
H
3
C
b
≡C
c
C
c
≡C
b
C
a
H
3
C
a
—C
b
1 .450
C
b
—C
c
1 .208
C
c
—C
c
1 .377
ED
C
a
—H
1 .09
Hexafluoroethane
F
3
CCF
3
C—C
1 .545
CF
1 .326
∠CCF
109 .8
ED
structure of Free molecules in the gas phase
9-39
6679X_S09.indb 39
4/11/08 3:46:11 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Hexafluoropropene
CF
2
=CFCF
3
C—C
1 .513
C=C
1 .329
(ass .)
C—F
1 .329
(ass .)
ED
∠CCC
127 .8
∠FCC (CF)
120
∠FCC(CF
2
) 124
∠FCC(CF
3
)
110
trans-1,3,5-Hexatriene
H
2
C
a
=C
b
HC
c
H=C
c
HC
b
H=C
a
H
2
C
a
—C
b
1 .337
C
b
—C
c
1 .458
C
c
—C
c
1 .368
ED
∠C
a
C
b
C
c
121 .7
∠C
b
C
c
C
c
124 .4
Hydrogen cyanide
HCN (linear)
C—H (r
e
)
1 .0655
C—N (r
e
)
1 .1532
MW, IR
Iminocyanide radical
HNCN
N—H
1 .034
N···N
2 .470
UV
∠HNC
116 .5
∠NCN
~180
Iodoacetylene
IC≡CH
C—C
1 .218
C—I
1 .980
C—H
1 .059
IR
Iodocyanoacetylene
IC
a
≡C
b
C
c
≡N
C
a
—C
b
1 .207
C
b
—C
c
1 .370
C
c
—N
1 .160
MW
(linear)
C
a
—I
1 .985
Iodomethane
CH
3
I
C—I (r
e
)
2 .132
C—H (r
e
)
1 .084
∠HCH (θ
e
)
111 .2
MW, IR
Iron pentacarbonyl
Fe(CO)
5
(D
3h
)
Fe—C (av .)
1 .821
(Fe—C)
eq
–
(Fe—C)
ax
0 .020
C—O (av .)
1 .153
ED
Isobutane
(C
b
H
3
)
3
C
a
H
C
a
—C
b
1 .535
C
a
—H
1 .122
C
b
—H
1 .113
ED, MW
∠C
b
C
a
C
b
110 .8
∠C
a
C
b
H
111 .4
Isobutene
H
H
c
C
b
C
c
C
a
H
3
C
a
H
3
C
a
—C
b
1 .508
C
b
—C
c
1 .342
C
a
—H
1 .119
ED, MW
C
c
—H
c
1 .10
∠C
a
C
b
C
a
115 .6
∠C
a
C
b
C
c
122 .2
∠C
b
C
c
H
121
∠HC
a
C
b
(av .)
111 .4
∠HC
a
H
107 .9
∠H
c
C
c
H
c
118 .5
Isocyanic acid
HNCO (bent)
N—C
1 .209
C—O
1 .166
N—H
0 .986
MW
∠NCO
180
∠HNC
128 .0
Isocyanomethane
C
a
H
3
—N≡C
b
C
a
—N
1 .424
N— C
b
1 .166
C
a
—H
1 .102
MW
∠NC
a
H
109 .12
∠HCH
123 .0
Isofulminic acid
HCNO (linear)
C—N
1 .161
N—O
1 .207
H—C
1 .027
MW
Isothiocyanic acid
HNCS
N—C
1 .216
C—S
1 .561
N—H
0 .989
MW
∠NCS
180
∠HNC
135 .0
Ketene
H
2
C=C=O
C—C
1 .315
C—O
1 .163
MW
C—H
1 .090
∠HCH
123 .5
Malononitrile
CH
2
(CN)
2
C—C
1 .480
C—N
1 .147
C—H
1 .091
MW
∠CCC
110 .4
∠CCN
176 .6
∠HCH
108 .4
Methane
CH
4
C—H (r
e
)
1 .0870
IR
Methanethioamide
H
b
H
a
C N
H
c
S
C—S
1 .626
C—N
1 .358
C—H
c
1 .10
MW
N—H
a
1 .002
N—H
b
1 .007
∠NCS
125 .3
∠H
a
NC
117 .9
∠H
b
NC
120 .4
∠SCH
c
127
∠H
a
NH
b
121 .7
∠NCH
c
108
Methanethiol
CH
3
SH
C—S
1 .819
S—H
1 .34
C—H
1 .09
MW
∠HSC
96 .5
∠HCH
109 .8
angle
between
CH
3
symmetry
axis and C—
S bond
2 .2
Methanol
CH
3
OH
C—O
1 .4246
C—H
1 .0936
O—H
0 .9451 MW
∠COH
108 .53
∠HCH
108 .63
angle
between
CH
3
symmetry
axis and C—
O bond
3 .27
Methyl
·CH
3
planar (D
3h
)
C—H
1 .076
R
N-Methylacetamide
C
c
H
3
H
N
C
b
O
H
3
C
a
C
a
—C
b
1 .520
C
b
—N
1 .386
C
c
—N
1 .469
ED
C
b
—O
1 .225
C—H
1 .107
∠C
b
NC
c
119 .7
∠NC
b
O
121 .8
∠C
a
C
b
N
114 .1
9-40
structure of Free molecules in the gas phase
6679X_S09.indb 40
4/11/08 3:46:14 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Methylamine
CH
3
NH
2
C—N
1 .471
N—H
1 .019
C—H
1 .095
MW
∠HNC
110 .3
∠HNH
106 .6
∠HCH
108 .1
angle between
CH
3
symmetry
axis and
C—N bond
4 .3
Methyl azide
N
a
N
b
N
c
CH
3
NNN linear
C—N
a
1 .468
N
a
—N
b
1 .216
N
b
—N
c
1 .113
ED
C—H
1 .09
∠CN
a
N
b
116 .8
3-Methyl-3H-diazirine
CH
3
CH
N
N
C—C
1 .501
C—N
1 .481
N—N
1 .235
MW
∠NCN
49 .3
dihedral angle
between CNN
plane and C—
C bond
122 .3
Methylene
:CH
2
C—H (r
e
)
1 .0748
∠HCH (θ
e
)
133 .84
IR,MW
Methylenecyclopropane
C
a
H
2
C
b
C
c
H
2
C
c
H
2
C
a
—C
b
1 .332
C
b
—C
c
1 .457
C
c
—C
c
1 .542
MW
C
c
—H
1 .09
∠C
c
C
b
C
c
63 .9
∠HC
a
H
114 .3
∠HC
c
H
113 .5
dihedral angle
between C
c
H
2
plane and C
c
—
C
c
bond
150 .8
3-Methyleneoxetane
C
a
H
2
C
b
C
c
H
2
C
c
H
2
O
C
a
—C
b
1 .33
C
b
—C
c
1 .52
C
c
—O
1 .45
MW
C—H
1 .09 (ass) ∠HC
c
H
114 (ass) ∠HC
a
H
120
(ass)
∠C
c
C
b
C
c
87
Methylenephosphine
CH
c
H
t
=PH
C—P
1 .673
C—H
c
1 .09
C—H
t
1 .09
MW
planar
P—H
1 .420
∠CPH
97 .4
∠HCH
117 .2
∠PCH
c
124 .4
∠PCH
t
118 .4
Methyl formate
H
b
O
b
C
b
O
a
C
a
H
3
C
b
—O
b
1 .206
C—O (av .)
1 .393
C
a
—H
1 .08
ED
C
b
—H
1 .101
(ass .)
∠COC
114
∠O
a
C
b
O
b
127
∠O
a
C
a
H
110
Methylgermane
CH
3
GeH
3
C—Ge
1 .945
Ge—H
1 .529
C—H
1 .083
MW
∠HGeH
109 .3
∠HCH
108 .4
Methyl hypochlorite
CH
3
OCl
C—O
1 .389
O—Cl
1 .674
C—H
1 .103
MW
∠COCl
112 .8
∠HCH
109 .6
Methylidyne
:CH
C—H (r
e
)
1 .1198
UV
Methylidynephosphine
HCP
C—P (r
e
)
1 .5398
C—H (r
e
)
1 .0692
MW
Methylketene
O
C
a
C
b
H
C
c
H
3
C
a
—C
b
1 .306
C
b
—C
c
1 .518
C
a
—O
1 .171
MW
C
b
—H
1 .083
C
c
—H
1 .10
∠OC
a
C
b
180 .5
∠C
a
C
b
C
c
122 .6
∠C
a
C
b
H
113 .7
∠C
c
C
b
H
123 .7
∠HCH
109 .2
Methyl nitrate
O
b
O
H
b
N
C
O
a
H
a
H
a
C—O
1 .437
C—H
a
1 .10
C—H
b
1 .09
MW
O—N
1 .402
N—O
a
1 .205
N—O
b
1 .208
∠CON
112 .7
∠ONO
a
118 .1
∠ONO
b
112 .4
∠OCH
a
110
∠OCH
b
103
Methyloxirane
O
C
c
H
2
C
a
H
3
C
b
H
C
a
—C
b
1 .51
∠C
a
C
b
C
c
121 .0
dihedral
angle
between
C
b
C
c
O plane
and C
a
C
b
bond
123 .8
MW
Methylphosphine
CH
3
PH
2
C—P
1 .858
C—H
1 .094
ED
Methylphosphonic
difluoride
CH
3
POF
2
C—P
1 .770
P—O
1 .444
P—F
1 .545
ED,MW
∠OPC
117 .8
∠FPC
103 .7
∠FPF
99 .2
Methylsilane
CH
3
SiH
3
C—Si
1 .867
Si—H
1 .485
C—H
1 .093
MW
∠HCH
107 .7
∠HSiH
108 .3
Methylstannane
CH
3
SnH
3
C—Sn
2 .143
Sn—H
1 .700
MW
structure of Free molecules in the gas phase
9-41
6679X_S09.indb 41
4/11/08 3:46:18 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Methyl thiocyanate
S C
b
N
C
a
H
3
S—C
a
1 .824
S—C
b
1 .684
C
b
—N
1 .170
MW
C—H
1 .081
∠C
a
SC
b
99 .0
∠HCH
110 .6
∠HCS
108 .3
Methyltrioxorhenium
CH
3
ReO
3
Re—C
2 .074
Re—O
1 .703
C—H
1 .088
MW
∠ReCH
108 .9
∠CReO
106 .4
Molybdenum carbide
MoC
Mo—C
1 .676
UV
Molybdenum carbonyl
Mo(CO)
6
(O
h
)
Mo—C
2 .063
C—O
1 .145
ED
Naphthalene
C
a
—C
b
1 .37
C
b
—C
b
1 .41
C
a
—C
c
1 .42
ED
C
c
—C
c
1 .42
C—C (av .)
1 .40
∠C
a
C
c
C
c
119 .4
Neopentane
C(CH
3
)
4
C—C
1 .537
C—H
1 .114
∠CCH
112
ED
Nickel carbonyl
Ni(CO)
4
(T
d
)
Ni—C
1 .839
C—O
1 .121
IR
Nickel monocarbonyl
NiCO (linear)
Ni—C
1 .64
C—O
1 .19
IR
Nickel cyanide
NiC≡N (linear)
Ni—C
1 .828
C—N
1 .158
MW
Nitromethane
CH
3
NO
2
C—N
1 .489
N—O
1 .224
C—H
1 .088
(ass .)
MW
∠ONO
125 .3
∠NCH
107
N-Nitrosodimethylamine
(CH
3
)
2
NNO
C—N
1 .461
N—O
1 .235
N—N
1 .344
ED
∠CNC
123 .2
∠CNN
116 .4
∠ONN
113 .6
Nitrosomethane
CH
3
NO
C—N
1 .49
N—O
1 .22
C—H
1 .084
MW
∠CNO
112 .6
∠NCH
109 .0
2,5-Norbornadiene
HC
b
HC
b
C
a
H
C
b
H
C
b
H
C
a
H
H
2
C
c
(C
2v
)
C
a
—C
b
1 .535
C
b
—C
b
1 .343
C
a
—C
c
1 .573
ED
C—H
1 .12
∠C
a
C
c
C
a
94
dihedral angle
between the
two C
a
C
b
C
b
C
a
planes
115 .6
1,2,5-Oxadiazole
(planar)
C—C
1 .421
C—N
1 .300
O—N
1 .380
MW
C—H
1 .076
∠CCH
130 .2
∠NCH
120 .9
∠CCN
109 .0
∠NON
110 .4
∠ONC
105 .8
1,3,4-Oxadiazole
(planar)
C—O
1 .348
C—N
1 .297
N—N
1 .399
MW
C—H
1 .075
∠OCH
118 .1
∠NCH
128 .5
∠CNN
105 .6
∠COC
102 .0
∠OCN
113 .4
Oxalic acid
H
O
b
O
a
C C
O
a
O
b
H
C—C
1 .544
C—O
a
1 .205
C—O
b
1 .336
ED
O
b
—H
1 .05
∠CCO
a
123 .1
∠O
a
CO
b
125 .0
∠CO
b
H
104
Oxalyl chloride
Cl
O
O
C
C
Cl
C—C
1 .534
C—O
1 .182
C—Cl
1 .744
ED
∠CCO
124 .2
∠CCCl
111 .7
68% trans,
32% gauche
at 0°C
Oxetane
C—C
1 .546
C—O
1 .448
C—H (av .)
1 .090
MW
∠CCC
85
∠COC
92
∠OCC
92
∠HCH (av .)
109 .9
9-42
structure of Free molecules in the gas phase
6679X_S09.indb 42
4/11/08 3:46:22 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Oxirane
O
CH
2
CH
2
C—C
1 .466
C—O
1 .431
C—H
1 .085
MW
∠HCH
116 .6
dihedral angle
between NH
2
plane and N—
C bond
158 .0
Phenol
C—C (av .)
1 .397
C
a
—O
1 .364
O—H
0 .956
MW
C
b
—H
1 .084
C
c
—H
1 .076
C
d
—H
1 .082
∠COH
109 .0
Phosphirane
CH
2
PH
CH
2
C—C
1 .502
C—P
1 .867
P—H
1 .43
MW
C—H
1 .09
∠CPC
47 .4
∠HPC
95 .2
∠HCH
114 .4
∠CCH
118
dihedral
angle
between
PCC plane
and PH
bond
95 .7
Piperazine
NH
NH
CH
2
CH
2
CH
2
CH
2
(C
2h
)
C—C
1 .540
C—N
1 .467
C—H
1 .110
ED
∠CNC
109 .0
∠CCN
110 .4
Palladium carbide
PdC
Pd—C
1 .712
UV
Platinum carbide
PtC
Pt—C (r
e
)
1 .6767
UV
Potassium carbide
KC
K—C
2 .528
MW
Propane
C
3
H
8
C—C
1 .532
C—H
1 .107
ED
∠CCC
112
∠HCH
107
Propene
C
a
—C
b
1 .341
C
b
—C
c
1 .506
ED, MW
C
a
—H
a
1 .104
C
c
—H
d
1 .117
∠C
a
C
b
C
c
124 .3
∠C
b
C
a
H
a,b,c
121 .3
∠C
b
C
c
H
d
110 .7
2-Propenoyl chloride
Cl
O
H
C
b
C
c
C
a
H
H
C
a
—C
b
1 .35
C
b
—C
c
1 .48
C
c
—Cl
1 .82
MW
C
c
—O
1 .19
C—H
1 .086
(ass .)
∠C
a
C
b
C
c
123
∠C
b
C
c
Cl
116
∠C
b
C
c
O
127
∠C
a
C
b
H
120 (ass .) ∠C
b
C
a
H
121 .5
(ass .)
2-Propynal
H
a
C
a
≡C
b
—C
c
H
c
O
C
a
—C
b
1 .211
C
b
—C
c
1 .453
C
c
—O
1 .214
ED, MW
(planar)
C
a
—H
a
1 .085
C
c
—H
c
1 .130
∠C
a
C
b
C
c
178 .6
∠C
b
C
c
O
124 .2
∠C
b
C
c
H
c
113 .7
Propyne
H
3
C
c
—C
b
≡C
a
H
C
c
—C
b
1 .459
C
b
—C
a
1 .206
MW
C
a
—H
1 .056
C
c
—H
1 .105
∠HC
c
C
b
110 .2
Propynal isocyanide
H
3
C
c
—C
b
≡C
a
—N≡C
C
c
—C
b
(r
s
)
1 .456
C
b
—C
a
(r
s
)
1 .206
C
a
—N (r
s
)
1 .316
MW
N—C (r
s
)
1 .175
C
c
—H (r
s
)
1 .090
∠HC
c
C
b
(θ
s
) 110 .7
Pyrazine
C—C
1 .339
C—N
1 .403
C—H
1 .115
ED
∠CCH
123 .9
∠CCN
115 .6
Pyridazine
N
N
HC
a
C
a
H
H
C
b
H
C
b
C
a
—C
b
1 .393
C
b
—C
b
1 .375
C
a
—N
1 .341
ED, MW
N—N
1 .330
∠NCC
123 .7
∠NNC
119 .3
structure of Free molecules in the gas phase
9-43
6679X_S09.indb 43
4/11/08 3:46:26 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Pyridine
C
a
—C
b
1 .395
C
b
—C
c
1 .394
C
a
—N
1 .340
MW
C
a
—H
a
1 .084
C
b
—H
b
1 .081
C
c
—H
c
1 .077
∠C
a
C
b
C
c
118 .5
∠C
b
C
c
C
b
118 .3
∠C
c
C
b
H
b
121 .3
∠C
a
NC
a
116 .8
∠NC
a
C
b
123 .9
∠NC
a
H
a
115 .9
Pyrimidine
(C
2v
assumed)
C—C
1 .393
C—N
1 .340
ED
∠NCN
127 .6
∠CNC
115 .5
Pyrrole
H
b
C
b
C
b
H
b
H
a
C
a
C
a
H
a
H
N
C
a
—C
b
1 .382
C
b
—C
b
1 .417
C
a
—N
1 .370
MW
C
a
—H
a
1 .076
C
b
—H
b
1 .077
N—H
0 .996
∠C
a
C
b
C
b
107 .4
∠C
a
NC
a
109 .8
∠NC
a
C
b
107 .7
∠C
b
C
b
H
127 .1
∠NC
a
H
a
121 .5
Pyruvonitrile
N
C
c
O
C
b
C
a
H
3
C
a
—C
b
1 .518
C
b
—C
c
1 .477
C—H
1 .12
ED, MW
C—N
1 .17
C—O
1 .208
∠HCH
109 .2
∠C
a
C
b
C
c
114 .2
∠C
a
C
b
O
124 .5
∠CCN
179
Ruthenium carbide
RuC
Ru—C
1 .607
UV
Silacyclobutane
CH
2
SiH
2
CH
2
CH
2
C—C
1 .571
C—Si
1 .885
C—H
1 .100
ED
Si—H
1 .47
∠CCC
99 .8
∠CSiC
77 .2
∠SiCC
84 .8
dihedral angle
between CCC
and CSiC
planes
146
Silaethene
H
2
Si=CH
2
Si—C (r
e
)
1 .704
Si—H (r
e
)
1 .467
C—H (r
e
)
1 .082
MW
∠HCSi
122 .0
∠HSiC
122 .4
Silicon dicarbide
CSiC (ring)
C—C(r
s
)
1 .269
Si—C (r
s
)
1 .832
∠CSiC (θ
s
)
40 .5
MW
Silylchloroacetylene
SiH
3
C≡CCl
C—C
1 .234
Si—C
1 .812
C—Cl
1 .620
ED
Si—H
1 .488
∠HSiC
109 .4
Silyl cyanide
SiH
3
C≡N
Si—C
1 .850
C—N
1 .156
Si—H
1 .487
ED,MW
∠HSiC
107 .25
Sodium carbide
NaC
Na—C
2 .232
MW
Spiro[2 .2]pentane
C
b
H
2
H
2
C
b
C
a
C
b
H
2
H
2
C
b
(D
2d
)
C
b
—C
b
1 .52
C
a
—C
b
1 .47
C—H
1 .09
ED
∠C
b
C
a
C
b
62
∠HCH
118
Strontium methyl
SrCH
3
Sr—C
2 .487
C—H (ass .)
1 .104
∠HCH
105 .8
UV
Succinonitrile
CH
2
CN
CH
2
CN
C—C
1 .561
C—C(N)
1 .465
C—N
1 .161
ED
C—H
1 .09
∠CCC
110 .4
dihedral
angle of
CCCC for
gauche
conformer
75
Tetrabromomethane
CBr
4
(T
d
)
C—Br
1 .935
ED
Tetrachloroethene
CCl
2
=CCl
2
C—C
1 .354
C—Cl
1 .718
∠ClCCl
115 .7
ED
Tetrachloromethane
CCl
4
(T
d
)
C—Cl
1 .767
ED
Tetracyanoethene
(CN)
2
C=C(CN)
2
C—C
1 .435
C=C
1 .357
C—N
1 .162
ED
∠CC=C
121 .1
2,2,4,4-Tetrafluoro-1,3-
dithietane
F
2
C
CF
2
S
S
(D
2h
assumed)
C—S
1 .785
C—F
1 .314
∠CSC
83 .2
ED
∠FCS
113 .7
Tetrafluoroethene
CF
2
=CF
2
C—C
1 .31
C—F
1 .319
∠CCF
123 .8
ED
Tetrafluoromethane
CF
4
(T
d
)
C—F
1 .323
ED
9-44
structure of Free molecules in the gas phase
6679X_S09.indb 44
4/11/08 3:46:30 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Tetrahydrofuran
O
CH
2
CH
2
CH
2
CH
2
C—C
1 .536
C—O
1 .428
C—H
1 .115
ED
Tetrahydropyran
O
H
2
C
CH
2
CH
2
H
2
C
H
2
C
chair form
C—C
1 .531
C—O
1 .420
C—H
1 .116
ED
∠COC
111 .5
∠OCC
111 .8
∠CCC (C)
108
∠CCC (O)
111
Tetrahydrothiophene
CH
2
CH
2
CH
2
CH
2
S
C—C
1 .536
C—S
1 .839
C—H
1 .120
ED
∠CCC
105 .0
∠CSC
93 .4
∠SCC
106 .1
Tetraiodomethane
CI
4
(T
d
)
C—I
2 .15
ED
Tetramethylgermane
(CH
3
)
4
Ge
C—Ge
1 .945
C—H
1 .12
∠GeCH
108
ED
Tetramethyl lead
(CH
3
)
4
Pb
C—Pb
2 .238
ED
Tetramethylsilane
(CH
3
)
4
Si
C—Si
1 .875
C—H
1 .115
∠HCH
109 .8
ED
Tetramethylstannane
(CH
3
)
4
Sn
C—Sn
2 .144
C—H
1 .12
ED
1,2,5-Thiadiazole
CH
HC
N
N
S
(planar)
C—C
1 .420
C—N
1 .328
S—N
1 .631
MW
C—H
1 .079
∠CCN
113 .8
∠NSN
99 .6
∠CCH
126 .2
1,3,4-Thiadiazole
N
N
CH
HC
S
(planar)
C—S
1 .721
C—N
1 .302
N—N
1 .371
MW
C—H
1 .08
∠CSC
86 .4
∠SCN
114 .6
∠CCN
112 .2
∠NCH
123 .5
∠SCH
121 .9
Thietane
C—C
1 .549
C—S
1 .847
C—H (av .)
1 .100
ED, MW
∠CSC
76 .8
∠HCH (av .)
112
dihedral
angle
between
CCC and
CSC planes
154
Thiirane
S
H
2
C
H
2
C
C—C
1 .484
C—S
1 .815
C—H
1 .083
MW
∠CSC
48 .3
∠CCS
65 .9
∠HCH
116
dihedral angle
between CH
2
plane and C—C
bond
152
Thioacetaldehyde
C
a
S
H
3
C
b
H
C
a
—S (r
s
)
1 .610
C
a
—C
b
(r
s
)
1 .506
MW
C
a
—H (r
s
)
1 .089
C
b
—H (r
s
)
1 .094
(av .)
∠C
b
C
a
S (θ
s
)
125 .3
∠C
b
C
a
H (θ
s
)
119 .4
∠HC
b
C
a
(θ
s
) 110 .6
(av .)
Thiocarbonyl fluoride
F
2
CS
C—S
1 .589
C—F
1 .315
∠FCF
107 .1
MW
Thioformaldehyde
CH
2
S
C—S
1 .611
C—H
1 .093
∠HCH
116 .9
MW
Thioketene
H
2
C=C=S
C—C (r
s
)
1 .314
C—S (r
s
)
1 .554
C—H (r
s
)
1 .080
IR
C
2v
∠HCH (θ
s
)
119 .8
Thiophene
C
a
—C
b
1 .370
C
b
—C
b
1 .423
C
a
—S
1 .714
MW
C
a
—H
a
1 .078
C
b
—H
b
1 .081
∠C
a
C
b
C
b
112 .5
∠C
a
SC
a
92 .2
∠SC
a
C
b
115 .5
∠SC
a
H
a
119 .9
∠C
b
C
b
H
b
124 .3
Toluene
C
6
H
5
—CH
3
C—C (ring)
1 .399
C—CH
3
1 .524
C—H (av .)
1 .11
ED
1,1,1-Tribromoethane
CH
3
CBr
3
C—C
1 .51 (ass .) C—Br
1 .93
C—H
1 .095
(ass .)
MW
∠BrCBr
111
∠CCBr
108
∠CCH
109 .0
(ass .)
structure of Free molecules in the gas phase
9-45
6679X_S09.indb 45
4/11/08 3:46:35 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Tribromomethane
CHBr
3
(C
3v
)
C—Br
1 .924
C—H
1 .11
∠BrCBr
111 .7
ED, MW
Tri-tert-butyl methane
HC
a
[C
b
(C
c
H
3
)
3
]
3
C
a
—C
b
1 .611
C
b
—C
c
1 .548
C—H
1 .111
ED
∠C
a
C
b
C
c
113 .0
Trichloroacetonitrile
CCl
3
CN
C—C
1 .460
C—N
1 .165
C—Cl
1 .763
ED
∠ClCCl
110 .0
1,1,1-Trichloroethane
CH
3
CCl
3
C—C
1 .541
C—Cl
1 .771
C—H
1 .090
MW
∠CCCl
109 .6
∠ClCCl
109 .4
∠HCH
110 .0
∠CCH
108 .9
Trichlorofluoromethane
CCl
3
F
C—Cl
1 .754
C—F
1 .362
∠ClCCl
111
MW
Trichloromethane
CHCl
3
C—Cl
1 .758
C—H
1 .100
∠ClCCl
111 .3
MW
Trichloromethylgermane
CH
3
GeCl
3
C—Ge
1 .89
Ge—Cl
2 .132
C—H
1 .103
(ass .)
ED, MW
∠ClGeCl
106 .4
∠GeCH
110 .5
(ass .)
Trichloromethylsilane
CH
3
SiCl
3
C—Si
1 .876
Si—Cl
2 .021
MW
Trichloromethylstannane
CH
3
SnCl
3
C—Sn
2 .10
Sn—Cl
2 .304
C—H
1 .100
ED
1,1,1-Trichloro-2,2,2-
trifluoroethane
CF
3
CCl
3
(staggered configuration)
C—C
1 .54
C—F
1 .33
C—Cl
1 .77
MW
∠CCF
110
∠CCCl
109 .6
∠CSnCl
113 .9
∠ClSnCl
104 .7
∠SnCH
108
Triethylenediamine
(D
3h
)
C—C
1 .562
C—N
1 .472
∠CNC
108 .7
ED
∠NCC
110 .2
Trifluoroacetic acid
C—C
1 .546
C—O
a
1 .192
C—O
b
1 .35
ED
C—F
1 .325
O—H
0 .96 (ass .)
∠CCO
a
126 .8
∠CCO
b
111 .1
∠CCF
109 .5
1,1,1-Trifluoroethane
CH
3
CF
3
C—C
1 .494
C—F
1 .340
C—H
1 .081
ED
Trifluoroiodomethane
CF
3
I (C
3v
)
C—F
1 .330
C—I
2 .138
∠FCF
108 .1
ED, MW
Trifluoromethane
CHF
3
(C
3v
)
C—F
1 .332
C—H
1 .098
∠FCF
108 .8
MW
Trifluoromethanesulfonyl
fluoride
CF
3
SO
2
F
a
C—S
1 .835
C—F (av .)
1 .325
S—O
1 .410
ED
S —F
a
1 .543
∠CSF
a
95 .4
∠CSO
108 .5
∠OSO
124 .1
∠FCF
109 .8
Trifluoromethylimino-
sulfurdifluoride
CF
3
N=SF
2
C—N
1 .409
S—N
1 .477
S—F
1 .594
ED,MW
C—F
1 .331
∠CNS
127 .2
∠NSF
112 .7
∠FSF
92 .8
∠FCF
108 .1
Trifluoromethyl peroxide
CF
3
OOCF
3
O—O
1 .42
C—O
1 .399
C—F
1 .320
ED
∠COO
107
∠FCF
109 .0
COOC
dihedral
angle of
internal
rotation
123
∠CCF
119 .2
∠CCH
112
Trimethyl aluminium
(CH
3
)
3
Al
C—Al
1 .957
C—H
1 .113
ED
∠CAlC
120
∠AlCH
111 .7
Trimethylamine
(CH
3
)
3
N
C—N
1 .458
C—H
1 .100
ED
∠CNC
110 .9
∠HCH
110
Trimethylarsine
(CH
3
)
3
As
C—As
1 .979
∠CAsC
98 .8
∠AsCH
111 .4
ED
Trimethyl bismuth
(CH
3
)
3
Bi
C—Bi
2 .263
C—H
1 .07
∠CBiC
97 .1
ED
Trimethylborane
(CH
3
)
3
B
C—B
1 .578
C—H
1 .114
ED
∠CBC
120
∠BCH
112 .5
Trimethylphosphine
(CH
3
)
3
P
C—P
1 .847
C—H
1 .091
ED
∠CPC
98 .6
∠PCH
110 .7
1,3,5-Trioxane
C
H
2
CH
2
H
2
C
O
O
O
C—O
1 .422
∠OCO
112 .2
∠COC
110 .3
MW
9-46
structure of Free molecules in the gas phase
6679X_S09.indb 46
4/11/08 3:46:37 PM
Compound
Structure
Bond distances in Å and angles in degrees
Method
Triphenylamine
(C
6
H
5
)
3
N (C
3
)
C—C
1 .392
C—N
1 .42
∠CNC
116
ED
torsional
dihedral angle
of phenyl rings
47
Tungsten carbide
WC
W—C
1 .7135
UV
Tungsten carbonyl
W(CO)
6
(O
h
)
W—C
2 .059
C—O
1 .149
ED
Vanadium carbonyl
V(CO)
6
(O
h
, involving
dynamic Jahn-Teller effect)
V—C
2 .015
C—O
1 .138
ED
Vinyl bromide
See Vinyl chloride
C—C
1 .3256
C—Br
1 .8835
C—H
a
1 .0780 MW
C—H
b
1 .0804
C—H
c
1 .0794
∠CCBr
122 .62
∠CCH
a
124 .34
∠CCH
b
119 .28
∠CCH
c
122 .03
Vinyl chloride
H
a
Cl
C
C
H
b
H
c
C—C
1 .3262
C—Cl
1 .7263
C—H
a
1 .0783 MW
C—H
b
1 .0796
C—H
c
1 .0796
∠CCCl
122 .75
∠CCH
a
123 .91
∠CCH
b
119 .28
∠CCH
c
121 .77
Vinyl fluoride
See Vinyl chloride
C—C
1 .3210
C—F
1 .3428
C—H
a
1 .0796 MW
C—H
b
1 .0774
C—H
c
1 .0789
∠CCF
121 .70
∠CCH
a
125 .95
∠CCH
b
118 .97
∠CCH
c
121 .34
Vinyl iodide
See Vinyl chloride
C—C
1 .3276
C—I
2 .0830
C—H
a
1 .0787 MW
C—H
b
1 .0823
C—H
c
1 .0799
∠CCI
122 .97
∠CCH
a
123 .54
∠CCH
b
119 .36
∠CCH
c
122 .30
Zinc cyanide
ZnC≡N (linear)
Zn—C
1 .955
C—N
1 .146
MW
structure of Free molecules in the gas phase
9-47
6679X_S09.indb 47
4/11/08 3:46:38 PM