09 02 89

background image

structure of free moLecuLes in the gas phase

This table gives information on the geometric structure of se-

lected molecules in the gas phase, including the overall geometry,

interatomic distances, and bond angles . The molecules have been

chosen to provide data on a wide variety of chemical bonds and

to illustrate the influence of molecular environment on bond dis-

tances and angles . The table is restricted to molecules with con-

ventional covalent or ionic bonds, but it should be pointed out

that structure data on many loosely bonded complexes of the van

der Waals type have recently become available . The references

below contain data on many molecules that are not included here

and give additional information such as uncertainties and isoto-

pic variations .

The two techniques for gas phase structure determination are

spectroscopy and electron diffraction . The following codes are

used to indicate the method used for each set of data:

ED – Gas phase electron diffraction

MW – Microwave spectroscopy, including both measurements

in bulk gases and molecular beams

IR – Infrared spectroscopy

R – Raman spectroscopy

UV – Electronic spectroscopy in the ultraviolet and visible re-

gions, including fluorescence measurements

ESR – Electron spin resonance .

In some cases data from two sources have been combined to

derive the structure; these are labeled by “ED, MW,” for example .

Because of the internal vibrations that are present in all mol-

ecules, even in their lowest energy state, the definition of inter-

atomic distance is not a simple matter . The ideal measure is the

equilibrium distance in the hypothetical non-vibrating state,

designated by r

e

. This is the value of the separation of the atoms

at the minimum of the potential function that describes the forc-

es between the two atoms . All other measures represent some

form of average, generally complex, over the vibrational mo-

tions . Since the potential function is asymmetric and less steep

at distances beyond the potential minimum, the average distance

is normally greater than r

e

. Distances determined by electron

diffraction (ED) represent an average over all vibrational states

that are populated at the temperature of the measurement; the

most common measure is designated r

g

. Distances determined

by spectroscopy (MW, IR, R, or UV) through measurements on

the ground vibrational state of the molecule, designated by r

0

,

describe some form of average, not easily defined, over the zero-

point vibrations . Another measure that is frequently used in

microwave spectroscopy is the “substitution” distance r

s

, which

is operationally defined through a series of measurements on

different isotopic species . In simple cases, r

s

often lies between

r

0

and r

e

and is therefore a closer approximation to r

e

. Several

other types of averages have been used; good discussions can be

found in Volumes II/25 and II/28 of the Landolt-Börnstein series

(Reference 1) and in References 4 and 5 .

Unless otherwise specified, distances and angles given in this

table are r

0

values if the method is spectroscopic and r

g

values if

the method is electron diffraction . When given, equilibrium and

substitution distances are designated by r

e

and r

s

, respectively .

Many interatomic distances and angles calculated by ab initio

techniques have been reported in the recent literature . However,

it should be emphasized that all data in this table are obtained

from direct experimental measurements . In a few cases, ab initio

calculations of vibration-rotation interaction constants have been

combined with the primary experimental measurements to derive

r

e

values in the table .

The number of significant figures in the values is an indication

of the precision of the measurement; thus a distance quoted to

three decimal places is probably reliable to about 0 .005 Å or better .

However, discrepancies between r

e

, r

0

, and r

g

values for the same

bond are often the order of 0 .01 Å because of vibrational averaging

considerations, so care must be taken in comparing bond distances

in different molecules . Some distances in simple molecules are giv-

en here to four or five decimal places, but little chemical significance

can be attached to differences beyond the third decimal place .

The table is presented in two parts: Part A covers molecules that

do not contain carbon while Part B lists carbon-containing mol-

ecules . Because many of the entries in Part A are free radicals or

other transient species whose systematic chemical names are unfa-

miliar, the listing in Part A is in order of chemical formula . Part B is

ordered by name . In both parts the second column gives informa-

tion on the overall configuration of the molecule, often indicated by

the point group of the equilibrium geometry . Columns 3 through 8

give the values of the bond distances and angles, and the last column

indicates the experimental method . Distances are given in Å units,

where 1 Å = 10

-10

m or 0 .1 nm . Angles are given in degrees .

The efforts of Kozo Kuchitsu in preparing an earlier version of

this table and in giving advice on the new version are gratefully

acknowledged .

references

1 . Landolt-Börnstein Numerical Data and Functional Relationships in

Science and Technology, Springer-Verlag, Berlin . The following vol-

umes are in the series Structure Data of Free Polyatomic Molecules:

II/7, 1976

II/15,1987

II/21, Supplement to II/7 and II/15, 1992

II/23, Supplement to II/7, II/15, and II/21, 1995

II/25A, Inorganic Molecules, 1998

II/25B, Molecules Containing One or Two Carbon Atoms, 1999

II/25C, Molecules Containing Three or Four Carbon Atoms, 2000

II/25D, Molecules Containing Five or More Carbon Atoms, 2003

II/28A, Inorganic Molecules, 2006

II/28B, Molecules Containing One or Two Carbon Atoms, 2006

II/28C, Molecules Containing Three or Four Carbon Atoms, 2007

II/28D, Molecules Containing Five or More Carbon Atoms, 2007 .

2 . Harmony, M . D ., Laurie, V . W ., Kuczkowski, R . L ., Schwendeman,

R . H ., Ramsay, D . A ., Lovas, F . J ., Lafferty, W . J ., and Maki, A . G .,

“Molecular Structure of Gas-Phase Polyatomic Molecules Determined

by Spectroscopic Methods”, J. Phys. Chem. Ref. Data, 8, 619, 1979 .

3 . Huber, K . P ., and Herzberg, G ., Molecular Spectra and Molecular

Structure IV. Constants of Diatomic Molecules, Van Nostrand

Reinhold, London, 1979 .

4 . Hargittai, M ., “Molecular Structure of Metal Halides,” Chem. Rev . 100,

2233-2301, 2000 .

5 . Harmony, M . D ., and Berry, R . J ., Struct. Chem . 1, 49, 1989 .

9-19

6679X_S09.indb 19

4/11/08 3:45:20 PM

background image

part 1 molecules not containing carbon

Formula

Structure

Bond distances in Å and angles in degrees

Method

AgBr

Ag—Br (r

e

)

2 .3931

MW

AgCl

Ag—Cl (r

e

)

2 .2808

MW

AgF

Ag—F (r

e

)

1 .9832

MW

AgH

Ag—H (r

e

)

1 .617

UV

AgI

Ag—I (r

e

)

2 .5446

MW

AgLi

Ag—Li

2 .41

UV

AgO

Ag—O (r

e

)

2 .0030

UV

AgOH

bent

Ag—O

2 .016

O—H

0 .952

∠HOAg

108 .3 (ass .) MW

AlBr

Al—Br (r

e

)

2 .295

UV

AlBr

3

D

3h

Al—Br

2 .221

ED

AlCa

Al—Ca

3 .148

UV

AlCl

Al—Cl (r

e

)

2 .1301

MW

AlCl

3

D

3h

Al—Cl

2 .063

ED

AlCo

Al—Co

2 .283

UV

AlCu

Al—Cu

2 .339

UV

AlF

Al—F (r

e

)

1 .6544

MW

AlF

3

D

3h

Al—F

1 .633

ED

AlH

Al—H (r

e

)

1 .6482

UV

AlI

Al—I (r

e

)

2 .5371

MW

AlI

3

D

3h

Al—I

2 .461

ED

AlK

Al—K

3 .88

UV

AlMn

Al—Mn

2 .638

UV

AlNi

Al—Ni

2 .321

UV

AlO

Al—O (r

e

)

1 .6176

UV

AlS

Al—S (r

e

)

2 .029

UV

AlV

Al—V

2 .620

UV

AlZn

Al—Zn

2 .696

UV

Al

2

Al—Al (r

e

)

2 .701

UV

Al

2

Br

6

Al

Al

Br

b

Br

b

Br

a

Br

a

Br

a

Br

a

Al—Br

a

∠Br

b

AlBr

b

2 .234

91 .6

Al—Br

b

∠Br

a

AlBr

a

2 .433

122

ED

D

2h

Al

2

Cl

6

See Al

2

Br

6

D

2h

Al—Cl

a

2 .061

Al—Cl

b

2 .250

ED

∠Cl

b

AlCl

b

90 .0

∠Cl

a

AlCl

a

122

AsBr

3

C

3v

As—Br

2 .324

∠BrAsBr

99 .6

ED

AsCl

3

C

3v

As—Cl

2 .165

∠ClAsCl

98 .6

ED, MW

AsF

3

C

3v

As—F

1 .710

∠FAsF

95 .9

ED, MW

AsF

5

As

F

a

F

b

F

b

F

b

F

a

As—F

a

1 .711

As—F

b

1 .656

ED

D

3h

AsH

As—H (r

e

)

1 .5232

UV

AsH

3

C

3v

As—H (r

e

)

1 .511

∠HAsH (θ

e

)

92 .1

MW, IR

AsI

3

C

3v

As—I

2 .557

∠IAsI

100 .2

ED

AsN

As—N (r

e

)

1 .6184

UV

AsO

As—O (r

e

)

1 .6236

UV

AsP

As—P (r

e

)

1 .99954

MW

As

2

As—As (r

e

)

2 .1026

UV

AuH

Au—H (r

e

)

1 .5237

UV

Au

2

Au—Au (r

e

)

2 .4719

UV

BBr

B—Br (r

e

)

1 .888

UV

BBr

3

D

3h

B—Br

1 .893

ED

BCl

B—Cl (r

e

)

1 .7153

UV

BClF

2

C

2v

B—Cl (r

s

)

1 .728

B—F

1 .315

∠FBF

118 .1

MW

9-20

structure of Free molecules in the gas phase

6679X_S09.indb 20

4/11/08 3:45:22 PM

background image

Formula

Structure

Bond distances in Å and angles in degrees

Method

BCl

3

D

3h

B—Cl

1 .742

ED

BF

B—F (r

e

)

1 .2626

UV

BF

2

H

B—H

1 .189

B—F

1 .311

∠FBF

118 .3

MW

BF

2

OH

F

a

F

b

BOH

B—F

a

(r

e

)

1 .3229

B—F

b

(r

e

)

1 .3129

B—O (r

e

)

1 .3448

MW

planar

∠FBF (θ

e

)

118 .36

∠F

a

BO (θ

e

)

122 .25

∠BOH (θ

e

)

113 .14

F

a

cis to OH

O—H (r

e

)

0 .9574

BF

3

D

3h

B—F

1 .313

ED, IR

BH

B—H (r

e

)

1 .2325

UV

BH

2

NH

2

planar

B—N

1 .391

B—H

1 .195

N—H

1 .004

MW

∠HBH

122 .2

∠HNH

114 .2

BH

3

planar

B—H

1 .1900

IR

BH

3

PH

3

staggered form

B—P

1 .937

B—H

1 .212

P—H

1 .399

MW

∠PBH

103 .6

∠BPH

116 .9

∠HBH

114 .6

∠HPH

101 .3

BI

3

D

3h

B—I

2 .118

ED

BN

B—N (r

e

)

1 .281

UV

BO

B—O (r

e

)

1 .2045

EPR

BO

2

linear

B—O

1 .265

UV

BS

B—S

1 .6091

UV

B

2

B—B (r

e

)

1 .590

UV

B

2

H

6

H

a

H

b

H

a

B

B

H

a

H

b

H

a

B—H

a

1 .19

B—H

b

1 .33

B···B

1 .77

IR, ED

∠H

a

BH

a

122

∠H

b

BH

b

97

B

3

H

3

O

3

B—O

1 .376

∠BOB

120

∠OBO

120

ED

B

3

H

6

N

3

C

2

B—N

1 .435

B—H

1 .26

N—H

1 .05

ED

∠BNB

121

∠NBN

118

BaBr

Ba—Br (r

e

)

2 .8445

UV

BaBr

2

Ba—Br

2 .912

∠BrBaBr

137 .0

ED

BaCl

Ba—Cl (r

e

)

2 .6828

UV

BaF

Ba—F (r

e

)

2 .163

UV

BaH

Ba—H (r

e

)

2 .2318

UV

BaI

Ba—I (r

e

)

3 .0848

UV

BaI

2

Ba—I

3 .150

∠IBaI

137 .6

ED

BaO

Ba—O (r

e

)

1 .9397

MW

BaOH

linear

Ba—O

2 .200

O—H

0 .927

UV

BaS

Ba—S (r

e

)

2 .5074

MBE

BeCl

2

linear

Be—Cl (r

e

)

1 .791

ED,IR

BeF

Be—F (r

e

)

1 .3609

UV

BeF

2

linear

Be—F (r

e

)

1 .3730

IR

BeH

Be—H (r

e

)

1 .3431

UV

BeH

2

linear

Be—H(r

e

)

1 .3264

IR

BeO

Be—O (r

e

)

1 .3308

UV

BeS

Be—S (r

e

)

1 .7415

UV

BiBr

Bi—Br (r

e

)

2 .6095

MW

BiBr

3

C

3v

Bi—Br

2 .577

∠BrBiBr

98 .6

ED

BiCl

Bi—Cl (r

e

)

2 .4716

MW

BiCl

3

C

3v

Bi—Cl

2 .424

∠ClBiCl

97 .5

ED

BiF

Bi—F (r

e

)

2 .0516

MW

BiF

3

C

3v

Bi—F

1 .987

∠FBiF

96 .1

ED

BiH

Bi—H (r

e

)

1 .805

UV

BiI

Bi—I (r

e

)

2 .8005

MW

BiI

3

C

3v

Bi—I

2 .807

∠IBiI

99 .5

ED

BiO

Bi—O (r

e

)

1 .934

UV

BiP

Bi—P (r

e

)

2 .29345

IR

Bi

2

Bi—Bi (r

e

)

2 .6596

UV

BrCl

Br—Cl (r

e

)

2 .1361

MW

BrF

Br—F (r

e

)

1 .7590

MW

BrF

3

F

b

F

a

Br

F

a

Br—F

a

Br—F

b

1 .810

1 .721

∠F

ax

BrF

eq

85 .1

∠F

a

BrF

b

86 .2

MW

C

2v

structure of Free molecules in the gas phase

9-21

6679X_S09.indb 21

4/11/08 3:45:24 PM

background image

Formula

Structure

Bond distances in Å and angles in degrees

Method

BrF

5

C

4v

Br—F (av .)

1 .753

(Br—F

eq

) –

(Br—F

ax

)

0 .069

∠F

ax

BrF

eq

85 .1

ED, MW

BrN

3

BrN

a

N

b

N

c

N

a

—N

b

1 .113 (ass .) N

b

—N

c

1 .247

N

a

—Br

1 .899

ED

planar

∠NNN

170 .7

∠BrNN

109 .7

BrO

Br—O (r

e

)

1 .7172

MW

BrO

2

C

2v

Br—O (r

e

)

1 .644

∠OBrO (θ

e

)

114 .3

MW

Br

2

Br—Br (r

e

)

2 .2811

R

CaBr

2

linear

Ca—Br

2 .62

ED

CaCl

Ca—Cl (r

e

)

2 .43676

UV

CaCl

2

linear

Ca—Cl

2 .483

ED

CaF

Ca—F (r

e

)

1 .967

UV

CaH

Ca—H (r

e

)

2 .002

UV

CaI

Ca—I (r

e

)

2 .8286

UV

CaI

2

linear

Ca—I

2 .840

ED

CaO

Ca—O (r

e

)

1 .8221

UV

CaOH

linear

Ca—O

1 .985

O—H

0 .921

UV

CaS

Ca—S (r

e

)

2 .3178

UV

CdH

Cd—H (r

e

)

1 .781

EPR

CdH

2

linear

Cd—H

1 .6792

IR

CdBr

2

linear

Cd—Br

2 .394

ED

CdCl

2

linear

Cd—Cl

2 .284

ED

CdI

2

linear

Cd—I

2 .582

ED

CeF

4

T

d

Ce—F

2 .036

ED

CeI

3

quasiplanar

Ce—I

2 .948

ED

ClBS

linear

B—Cl

1 .681

B—S

1 .606

MW

ClF

Cl—F (r

e

)

1 .6283

MW

ClF

3

F

b

F

a

Cl

F

a

Cl—F

a

1 .698

Cl—F

b

1 .598

∠F

a

ClF

b

87 .5

MW

ClN

3

ClN

a

N

b

N

c

N

a

—N

b

1 .253

N

b

—N

c

1 .113

N

a

—Cl

1 .746

MW

planar

∠NNN

171 .0

∠ClNN

108 .7

ClO

Cl—O (r

e

)

1 .5696

MW, UV

ClO

2

C

2v

Cl—O

1 .470

∠OClO

117 .38

MW

Cl

2

Cl—Cl (r

e

)

1 .9878

UV

Cl

2

O

C

2v

Cl—O

1 .6959

∠ClOCl

110 .89

MW

CoBr

2

linear

Co—Br

2 .241

ED

CoCl

2

linear

Co—Cl

2 .113

ED

CoF

2

linear

Co—F

1 .754

[Co—F (r

e

)]

1 .738

ED

CoF

3

D

3h

Co—F

1 .732

ED

CoH

Co—H (r

e

)

1 .542

UV

CrF

2

linear

Cr—F

1 .795

ED

CrF

3

D

3h

Cr—F

1 .732

ED

CrF

4

T

d

Cr—F

1 .706

ED

CrH

Cr—H (r

e

)

1 .656

UV

CrO

Cr—O (r

e

)

1 .615

UV

CsBr

Cs—Br (r

e

)

3 .0723

MW

CsCl

Cs—Cl (r

e

)

2 .9063

MW

CsF

Cs—F (r

e

)

2 .3454

MW

CsH

Cs—H (r

e

)

2 .4938

UV

CsI

Cs—I (r

e

)

3 .3152

MW

CsO

Cs—O (r

e

)

2 .3007

MW

CsOH

linear; large amplitude

bending mode

Cs—O (r

e

)

2 .395

O—H (r

e

)

0 .97

MW

Cs

2

Cs—Cs (r

e

)

4 .47

UV

CuBr

Cu—Br (r

e

)

2 .1734

MW

CuCl

Cu—Cl (r

e

)

2 .0512

MW

CuF

Cu—F (r

e

)

1 .7449

MW

CuF

2

linear

Cu—F

1 .713

ED

CuH

Cu—H (r

e

)

1 .4626

UV

CuI

Cu—I (r

e

)

2 .3383

MW

CuLi

Cu—Li

2 .26

UV

CuO

Cu—O (r

e

)

1 .7244

UV

9-22

structure of Free molecules in the gas phase

6679X_S09.indb 22

4/11/08 3:45:25 PM

background image

Formula

Structure

Bond distances in Å and angles in degrees

Method

CuOH

bent

Cu—O (r

s

)

1 .769

O—H

0 .952

∠HOCu

110 .24 (θ

s

)

MW

CuS

Cu—S

2 .051

UV

Cu

2

Cu—Cu (r

e

)

2 .2197

UV

DyBr

3

quasiplanar

Dy—Br

2 .609

ED

DyCl

3

quasiplanar

Dy—Cl

2 .461

ED

FN

3

FN

a

N

b

N

c

N

a

—N

b

1 .253

N

b

—N

c

1 .132

N

a

—F

1 .439

MW

planar

∠NNN

170 .3

∠FNN

103 .8

F

2

F—F (r

e

)

1 .4119

R

FeBr

2

linear

Fe—Br

2 .294

ED

FeCl

2

linear

Fe—Cl

2 .132

UV,ED

FeF

2

linear

Fe—F

1 .769

[Fe—F (r

e

)]

1 .755

ED

FeF

3

D

3h

Fe—F

1 .763

ED

FeH

Fe—H

1 .620

IR

FeO

Fe—O

1 .444

UV

FeS

Fe—S

2 .017

MW

GaBr

Ga—Br (r

e

)

2 .3525

MW

GaBr

3

D

3h

Ga—Br

2 .249

ED

GaCl

Ga—Cl (r

e

)

2 .2017

MW

GaCl

3

D

3h

Ga—Cl

2 .110

ED

GaF

Ga—F (r

e

)

1 .7744

MW

GaF

3

D

3h

Ga—F

1 .725

ED

GaH

Ga—H (r

e

)

1 .663

UV

GaI

Ga—I (r

e

)

2 .5747

MW

GaI

3

D

3h

Ga—I

2 .458

ED

GaO

Ga—O

1 .744

UV

Ga

2

Br

6

See Al

2

Br

6

Ga—Br

a

2 .250

Ga—Br

b

2 .453

ED

D

2h

∠Br

a

GaBr

a

92 .7

∠Br

b

GaBr

b

123

Ga

2

Cl

6

See Al

2

Br

6

Ga—Cl

a

2 .116

Ga—Cl

b

2 .305

ED

D

2h

∠Cl

a

GaCl

a

90

∠Cl

b

GaCl

b

124 .5

GdBr

3

C

3v

Gd—Br

2 .641

ED

GdCl

3

C

3v

Gd—Cl

2 .488

ED

GdF

3

C

3v

Gd—F

2 .053

ED

GdI

3

C

3v

Gd—I

2 .840

∠IGdI

108

ED

GeBrH

3

C

3v

Ge—H

1 .526

Ge—Br

2 .299

∠HGeH

106 .2

MW, IR

GeBr

2

Ge—Br (r

e

)

2 .359

∠BrGeBr

101 .0

ED

GeBr

4

T

d

Ge—Br

2 .272

ED

GeClH

3

C

3v

Ge—H

1 .537

Ge—Cl

2 .150

∠HGeH

111 .0

IR, MW

GeCl

2

Ge—Cl (r

e

)

2 .186

∠ClGeCl

100 .3

ED

GeCl

4

T

d

Ge—Cl

2 .113

ED

GeFH

3

C

3v

Ge—H

1 .522

Ge—F

1 .732

∠HGeH

113 .0

MW, IR

GeF

2

Ge—F (r

e

)

1 .7321

∠FGeF (θ

e

)

97 .15

MW

GeH

Ge—H (r

e

)

1 .5880

UV

GeHI

Ge—I

2 .525

Ge—H

1 .593

∠HGeI

93 .5

UV

GeH

4

T

d

Ge—H

1 .5251

IR, R

GeI

2

Ge—I

2 .540

∠IGeI

102 .1

ED

GeI

4

T

d

Ge—I

2 .515

ED

GeO

Ge—O (r

e

)

1 .6246

MW

GeS

Ge—S (r

e

)

2 .0121

MW

GeSe

Ge—Se (r

e

)

2 .1346

MW

GeTe

Ge—Te (r

e

)

2 .3402

MW

Ge

2

H

6

Ge—Ge

2 .403

Ge—H

1 .541

ED

∠HGeH

106 .4

∠GeGeH

112 .5

HBr

H—Br (r

e

)

1 .4145

MW

HCl

H—Cl (r

e

)

1 .2746

MW

HClO

ClOH (bent)

Cl—O

1 .690

O—H

0 .975

∠HOCl

102 .5

MW, IR

HClO

4

O

a

O

a

O

a

Cl

O

b

H

Cl—O

a

∠O

a

ClO

a

1 .407

114 .3

Cl—O

b

∠O

a

ClO

b

1 .639

104 .1

ED

structure of Free molecules in the gas phase

9-23

6679X_S09.indb 23

4/11/08 3:45:27 PM

background image

Formula

Structure

Bond distances in Å and angles in degrees

Method

HF

H—F (r

e

)

0 .9169

MW

HFO

FOH (bent)

F—O

1 .442

O—H

0 .96

∠HOF

97 .2

MW

HI

H—I (r

e

)

1 .6090

MW

HIO

IOH (bent)

I—O

1 .9941

O—H

0 .967

∠HOI

103 .9

MW

HNO

bent

N—O

1 .212

N—H

1 .063

∠HNO

108 .6

UV

HNO

2

s-trans

conformer

s-cis

conformer

MW

O

b

—H

0 .958

O

b

—H

0 .98

N—O

b

1 .432

N—O

b

1 .39

N—O

a

1 .170

N—O

a

1 .19

∠O

a

NO

b

110 .7

∠O

a

NO

b

114

∠NO

b

H

102 .1

∠NO

b

H

104

HNO

3

planar

N—O

a

O

c

—H

∠O

c

NO

a

1 .20

0 .96

113 .9

N—O

b

∠O

c

NO

b

1 .21

115 .9

N—O

c

∠HO

c

N

1 .41

102 .2

MW

HNSO

planar

N—S

1 .512

S—O

1 .451

N—H

1 .029

MW

∠NSO

120 .4

∠HNS

115 .8

HN

3

HN

a

N

b

N

c

N

a

—N

b

1 .245

N

b

—N

c

1 .134

N

a

—H

1 .015

MW

planar

∠NNN

171 .8

∠HNN

109 .2

HPO

P—O

1 .4843

P—H

1 .473

∠HPO

104 .57

MW

H

2

H—H

(r

e

)

0 .74144

UV

H

2

O

C

2v

O—H

(r

e

)

0 .9575

∠HOH (θ

e

)

104 .51

MW, IR

H

2

O

2

C

2

O—O

1 .475

∠OOH

94 .8

dihedral angle 119 .8

IR

H

2

S

C

2v

H—S (r

e

)

1 .3356

∠HSH (θ

e

)

92 .12

MW, IR

H

2

SO

4

O

c

O

d

S

H

a

O

a

O

b

H

b

O—H

∠O

a

SO

b

∠O

a

SO

d

dihedral angle

between the

H

a

O

a

S and

O

a

SO

b

planes

0 .97

101 .3

106 .4

90 .9

S—O

a

∠O

c

SO

d

∠H

a

O

a

S

dihedral angle

between the

H

a

SO

b

and

O

c

SO

d

planes

1 .574

123 .3

108 .5

88 .4

S—O

c

∠O

a

SO

c

dihedral angle

between the

H

a

O

a

S and

O

a

SO

c

planes

1 .422

108 .6

20 .8

MW

C

2

H

2

S

2

C

2

S—S

2 .055

S—H

1 .327

∠SSH

91 .3

ED, MW

dihedral angle 90 .6

HfBr

4

T

d

Hf—Br

2 .450

ED

HfCl

4

T

d

Hf—Cl

2 .316

ED

HfF

Hf—F

1 .8596

UV

HfF

4

T

d

Hf—F

1 .909

ED

HfI

4

T

d

Hf—I

2 .662

ED

HgBr

2

linear

Hg—Br

2 .384

ED

HgCl

2

linear

Hg—Cl

2 .252

ED

HgH

Hg—H (r

e

)

1 .7404

UV

HgI

2

linear

Hg—I

2 .568

ED

HoCl

3

Ho—Cl

2 .462

ED

HoF

3

Ho—F

2 .007

ED

HoO

Ho—O

1 .797

UV

IBr

I—Br (r

e

)

2 .4691

MW

ICl

I—Cl (r

e

)

2 .3210

MW

IF

I—F (r

e

)

1 .9098

UV

IF

5

C

4v

I—F (av .)

1 .860

(I—F

eq

) –

(I—F

ax

)

0 .03

∠F

ax

IF

eq

82 .1

ED, MW

IO

I—O (r

e

)

1 .8676

MW

I

2

I—I (r

e

)

2 .6663

R

InBr

In—Br (r

e

)

2 .5432

MW

InCl

In—Cl (r

e

)

2 .4012

MW

InCl

3

In—Cl

2 .291

ED

InF

In—F (r

e

)

1 .9854

MW

InH

In—H (r

e

)

1 .8376

UV

9-24

structure of Free molecules in the gas phase

6679X_S09.indb 24

4/11/08 3:45:29 PM

background image

Formula

Structure

Bond distances in Å and angles in degrees

Method

InI

In—I (r

e

)

2 .7537

MW

IrF

6

O

h

Ir—F

1 .831

ED

KBH

4

H

a

(BH

3

)K (C

3v

)

B—H

(BH

3

)

1 .272

B—H

a

1 .233

K—B

2 .656

MW

KBr

K—Br (r

e

)

2 .8208

MW

KCl

K—Cl (r

e

)

2 .6667

MW

KF

K—F (r

e

)

2 .1716

MW

KH

K—H (r

e

)

2 .244

UV

KI

K—I (r

e

)

3 .0478

MW

KOH

linear; large amplitude

bending mode

K—O

2 .212

O—H

0 .91

MW

K

2

K—K (r

e

)

3 .9051

UV

KrF

2

linear

Kr—F

1 .89

ED

LaBr

La—Br (r

e

)

2 .65208

MW

LaBr

3

C

3v

La—Br

2 .742

ED

LaCl

La—Cl (r

e

)

2 .49804

MW

LaCl

3

C

3v

La—Cl

2 .589

ED

LaF

La—F (r

e

)

2 .02338

MW

LaI

La—I (r

e

)

2 .87885

MW

LaO

La—O (r

e

)

1 .82591

UV

LiBH

4

H

a

(BH

3

)Li (C

3v

)

B—H

(H

3

)

1 .257

B—H

a

1 .218

Li—B

1 .939

MW

LiBr

Li—Br (r

e

)

2 .1704

MW

LiCl

Li—Cl (r

e

)

2 .0207

MW

LiF

Li—F (r

e

)

1 .5639

MW

LiH

Li—H (r

e

)

1 .5949

MW

LiI

Li—I (r

e

)

2 .3919

MW

LiO

Li—O (r

e

)

1 .68822

UV

LiOH

linear

Li—O (r

e

)

1 .5776

O—H (r

e

)

0 .949

MW

Li

2

Li—Li (r

e

)

2 .6729

UV

Li

2

Cl

2

Li

Cl

Cl

Li

Li—Cl

2 .23

Cl—Cl

3 .61

∠ClLiCl

108

ED

Li

2

O

linear

Li—O

1 .606

UV

LuBr

3

C

3v

Lu—Br

2 .557

ED

LuCl

3

C

3v

Lu—Cl

2 .417

∠ClLuCl

112

ED

LuI

3

C

3v

Lu—I

2 .768

ED

MgBr

Mg—Br (r

e

)

2 .34742

MW

MgCl

Mg—Cl (r

e

)

2 .1964

UV

MgCl

2

linear

Mg—Cl

2 .179

ED

MgF

Mg—F (r

e

)

1 .7500

UV

MgF

2

linear

Mg—F

1 .771

ED

MgH

Mg—H (r

e

)

1 .7297

UV

MgO

Mg—O (r

e

)

1 .749

UV

MgOH

linear

Mg—O

1 .770

O—H

0 .912

UV

Mg

2

Mg—Mg (r

e

)

3 .891

UV

MnBr

2

linear

Mn—Br

2 .344

ED

MnCl

2

linear

Mn—Cl

2 .202

ED

MnF

2

linear

Mn—F

1 .811

[Mn—F (r

e

)]

1 .797

ED

MnH

Mn—H (r

e

)

1 .7308

UV

MnI

2

linear

Mn—I

2 .538

ED

MoCl

4

O

C

4v

Mo—Cl

2 .279

Mo—O

1 .658

ED

∠ClMoCl

87 .2

MoF

4

Mo—F

1 .851

ED

MoF

6

O

h

Mo—F

1 .821

ED

NBr

N—Br (r

e

)

1 .79

UV

NCl

N—Cl (r

e

)

1 .6107

UV

NClH

2

N—H

1 .017

N—Cl

1 .748

MW, IR

∠HNCl

103 .7

∠HNH

107

NCl

3

N—Cl

1 .759

∠ClNCl

107 .1

ED

structure of Free molecules in the gas phase

9-25

6679X_S09.indb 25

4/11/08 3:45:31 PM

background image

Formula

Structure

Bond distances in Å and angles in degrees

Method

NF

N—F (r

e

)

1 .3170

UV

NF

2

N—F

1 .3528

∠FNF

103 .18

MW

NH

2

N—H

1 .024

∠HNH

103 .3

UV

NH

2

NO

2

N—N

1 .427

N—H

1 .005

MW

dihedral angle

between NH

2

and NNO

2

planes

128 .2

∠HNH

115 .2

∠ONO

130 .1

NH

3

C

3v

N—H (r

e

)

1 .012

∠HNH (θ

e

)

106 .7

IR

NH

4

Cl

H

3

N····HCl (C

3v

)

N—Cl

3 .136

MW

NH

N—H (r

e

)

1 .0362

LMR

NH

2

OH

bisector of HNH angle is

trans to OH bond

N—O

1 .453

N—H

1 .02

O—H

0 .962

MW

∠HNO

103 .3

∠HNH

107

∠NOH

101 .4

NO

N—O (r

e

)

1 .1506

IR

NOCl

N—O

1 .14

N—Cl

1 .975

∠ONCl

113

MW

NOF

N—O

1 .136

N—F

1 .512

∠FNO

110 .1

MW

NO

2

N—O

1 .193

∠ONO

134 .1

MW

NO

2

Cl

C

2v

N—O

1 .202

N—Cl

1 .840

∠ONO

130 .6

MW

NO

2

F

C

2v

N—O

1 .1798

N—F

1 .467

∠ONO

136

MW

NS

N—S (r

e

)

1 .4940

IR

N

2

N—N (r

e

)

1 .0977

UV

N

2

H

4

H

a

atom is closer to the C

2

axis, H

b

is farther from the

C

2

axis

N—N

∠HNH

dihedral angle

of internal

rotation

1 .449

106 .6 (ass .)

91

N—H

∠NNH

a

1 .021

112

∠NNH

b

106

ED, MW

N

2

O

N—N (r

e

)

1 .1284

N—O (r

e

)

1 .1841

MW, IR

N

2

O

3

O

c

N

a

N

b

O

b

O

a

N

a

—N

b

N

b

—O

b

∠O

a

N

a

N

b

1 .864

N

a

—O

a

1 .142

MW

1 .202

N

b

—O

c

1 .217

105 .05

∠N

a

N

b

O

b

112 .72

∠N

a

N

b

O

c

117 .47

N

2

O

4

O

O

N N

O

O

N—N

1 .782

N—O

1 .190

∠ONO

135 .4

ED

D

2h

NaBH

4

H

a

(BH

3

)Na (C

3v

)

B—H

(BH

3

)

1 .278

B—H

a

1 .238

Na—B

2 .308

MW

NaBr

Na—Br (r

e

)

2 .5020

MW

NaCl

Na—Cl (r

e

)

2 .3609

MW

NaF

Na—F (r

e

)

1 .9260

MW

NaH

Na—H (r

e

)

1 .8873

UV

NaI

Na—I (r

e

)

2 .7115

MW

NaO

Na—O (r

e

)

2 .05155

UV

Na

2

Na—Na (r

e

)

3 .0789

UV

NbCl

4

T

d

Nb—Cl

2 .279

ED

NbCl

5

D

3h

Nb—Cl

ax

2 .307

Nb—Cl

eq

2 .276

ED

NbO

Nb—O (r

e

)

1 .691

UV

NdI

3

C

3v

Nd—I

2 .879

ED

NiBr

Ni—Br

2 .1963

UV

NiBr

2

linear

Ni—Br

2 .201

ED

NiCl

2

linear

Ni—Cl

2 .076

ED

NiF

2

linear

Ni—F

1 .729

[Ni—F (r

e

)]

1 .715

ED

NiH

Ni—H (r

e

)

1 .476

UV

NiI

Ni—I

2 .348

UV

NpF

6

O

h

Np—F

1 .982

ED

OF

O—F (r

e

)

1 .3579

LMR

OF

2

C

2v

O—F (r

e

)

1 .4053

∠FOF (θ

e

)

103 .07

MW

OH

O—H (r

e

)

0 .96966

UV

O(SiH

3

)

2

Si—H

1 .486

Si—O

1 .634

∠SiOSi

144 .1

ED

O

2

O—O (r

e

)

1 .2074

MW

9-26

structure of Free molecules in the gas phase

6679X_S09.indb 26

4/11/08 3:45:33 PM

background image

Formula

Structure

Bond distances in Å and angles in degrees

Method

O

2

F

2

C

2

O—O

1 .217

F—O

1 .575

∠OOF

109 .5

MW

dihedral angle

of internal

rotation

87 .5

O

3

C

2v

O—O (r

e

)

1 .2716

∠OOO (θ

e

)

117 .47

MW

OsF

6

O

h

Os—F

1 .832

ED

OsO

4

T

d

Os—O

1 .712

ED

PBr

3

C

3v

P—Br

2 .220

∠BrPBr

101 .0

ED

PCl

P—Cl (r

e

)

2 .01461

UV

PCl

3

C

3v

P—Cl

2 .039

∠ClPCl

100 .27

ED

PCl

5

Cl

b

Cl

b

Cl

b

P

Cl

a

Cl

a

P—Cl

a

2 .124

P—Cl

b

2 .020

ED

D

3h

PF

P—F (r

e

)

1 .5896

UV

PF

3

C

3v

P—F

1 .570

∠FPF

97 .8

ED, MW

PF

5

D

3h

P—F

eq

1 .534

P—F

ax

1 .577

ED

PH

P—H (r

e

)

1 .4223

LMR

PH

2

P—H

1 .418

∠HPH

91 .70

UV

PH

3

c

3v

P—H

1 .4200

∠HPH

93 .345

MW

PN

N—P (r

e

)

1 .49087

MW

PO

O—P (r

e

)

1 .4759

UV

POCl

3

C

3v

P—O

1 .449

P—Cl

1 .993

∠ClPCl

103 .3

ED

POF

3

C

3v

P—O

1 .436

P—F

1 .524

∠FPF

101 .3

ED, MW

P

2

P—P (r

e

)

1 .8931

UV

P

2

F

4

trans conformer

P—F

1 .587

P—P

2 .281

∠FPF

99 .1

P

2

F

4

∠PPF

95 .4

P

4

T

d

P—P

2 .21

ED

P

4

O

6

T

d

P—O

1 .638

∠POP

126 .4

ED

PbBr

2

bent

Pb—Br (r

e

)

2 .598

ED

PbCl

2

bent

Pb—Cl (r

e

)

2 .444

ED

PbCl

4

T

d

Pb—Cl

2 .369

ED

PbF

Pb—F (r

e

)

2 .0575

UV

PbF

2

bent

Pb—F (r

e

)

2 .041

ED

PbH

Pb—H (r

e

)

1 .839

UV

PbI

2

bent

Pb—I (r

e

)

2 .807

ED

PbO

Pb—O (r

e

)

1 .9218

MW

PbS

Pb—S (r

e

)

2 .2869

MW

PbSe

Pb—Se (r

e

)

2 .4022

MW

PbTe

Pb—Te (r

e

)

2 .5950

MW

PrCl

3

C

3v

Pr—Cl

2 .554

ED

PrF

3

C

3v

Pr—F

2 .091

ED

PrI

3

C

3v

Pr—I

2 .901

∠IPrI

113

ED

PtC

Pt—C (r

e

)

1 .6767

UV

PtH

Pt—H (r

e

)

1 .52852

UV

PtN

Pt—N (r

e

)

1 .682

MW

PtO

Pt—O (r

e

)

1 .7273

UV

PtS

Pt—S (r

e

)

2 .03983

MW

PtSi

Pt—Si (r

e

)

2 .0612

MW

PuF

6

O

h

Pu—F

1 .972

ED

RbBr

Rb—Br (r

e

)

2 .9447

MW

RbCl

Rb—Cl (r

e

)

2 .7869

MW

RbF

Rb—F (r

e

)

2 .2703

MW

RbH

Rb—H (r

e

)

2 .367

UV

RbI

Rb—I (r

e

)

3 .1768

MW

RbO

Rb—O (r

e

)

2 .25420

UV

RbOH

linear; large amplitude

bending mode

Rb—O

2 .301

O—H

0 .957

MW

ReClO

3

C

3v

Re—O

1 .702

Re—Cl

2 .229

∠ClReO

109 .4

MW

structure of Free molecules in the gas phase

9-27

6679X_S09.indb 27

4/11/08 3:45:34 PM

background image

Formula

Structure

Bond distances in Å and angles in degrees

Method

ReClO

4

C

4v

Re—O

1 .663

Re—Cl

2 .270

∠ClReO

105 .5

ED

ReCl

5

D

3h

Re—Cl

eq

2 .238

Re—Cl

ax

2 .263

ED

ReF

6

O

h

Re—F

1 .832

ED

ReF

7

pseudorotation

Re—F

1 .835

ED

RhB

Rh—B

1 .691

UV

RhC

Rh—C

1 .614

UV

RhS

Rh—S

2 .059

UV

RuO

4

T

d

Ru—O

1 .706

ED

SCl

2

C

2v

S—Cl

2 .006

∠ClSCl

103 .0

ED

SF

S—F (r

e

)

1 .6006

MW

SF

2

S—F

1 .5921

∠FSF

98 .20

MW

SF

6

O

h

S—F

1 .561

ED

SH

S—H (r

e

)

1 .34066

UV

SO

S—O (r

e

)

1 .4811

MW

SOCl

2

S—O

1 .44

S—Cl

2 .072

MW

∠ClSCl

97 .2

∠OSCl

108 .0

SOF

2

S—O

1 .420

S—F

1 .583

ED

∠FSF

92 .2

∠OSF

106 .2

SOF

4

O

F

a

S F

a

F

b

F

b

C

2v

S—O

1 .403

S—F

a

1 .575

S—F

b

1 .552

ED

∠OSF

a

90 .7

∠OSF

b

124 .9

∠F

a

SF

b

89 .6

∠F

b

SF

b

110 .2

SO

2

S—O (r

e

)

1 .4308

∠OSO (θ

e

)

119 .329

MW

SO

2

Cl

2

C

2v

S—Cl

2 .011

S—O

1 .404

ED

∠ClSCl

100 .0

∠OSO

123 .5

SO

2

F

2

C

2v

S—F

1 .530

S—O

1 .397

ED

∠FSF

97

∠OSO

123

SO

3

D

3h

S—O

1 .4198

IR

S(SiH

3

)

2

Si—S

2 .136

Si—H

1 .494

∠SiSSi

97 .4

ED

S

2

S—S (r

e

)

1 .8892

R

S

2

Br

2

C

2

S—Br

2 .24

S—S

1 .98

∠SSBr

105

ED

dihedral angle

of internal

rotation

83 .5

S

2

Cl

2

C

2

S—Cl

2 .057

S—S

1 .931

∠SSCl

108 .2

ED

dihedral angle

of internal

rotation

84 .1

S

2

O

2

planar cis form

S—S

2 .025

S—O

1 .458

∠OSS

112 .8

MW

S

8

S

S

S

S

S

S

S

S

S—S

2 .07

∠SSS

105

(D

4d

)

ED

SbBr

3

C

3v

Sb—Br

2 .490

∠BrSbBr

98 .2

ED

SbCl

3

C

3v

Sb—Cl

2 .334

∠ClSbCl

97 .1

ED

SbCl

5

D

3h

Sb—Cl

eq

2 .277

Sb—Cl

ax

2 .338

ED

SbF

Sb—F (r

e

)

1 .918

UV

SbF

3

C

3v

Sb—F

1 .880

∠FSbF

94 .9

ED

SbH

Sb—H

1 .723

UV

SbH

3

C

3v

Sb—H

1 .704

∠HSbH

91 .6

MW

SbI

3

C

3v

Sb—I

2 .721

∠ISbI

99 .0

ED

SbO

Sb—O (r

e

)

1 .826

UV

SbP

Sb—P (r

e

)

2 .20544

MW

ScCl

3

D

3h

Sc—Cl

2 .291

ED

ScF

Sc—F (r

e

)

1 .788

UV

ScF

3

D

3h

Sc—F

1 .847

ED

SeF

Se—F

1 .742

MW

SeF

6

O

h

Se—F

1 .69

ED

SeH

Se—H (r

e

)

1 .48

UV

SeO

Se—O (r

e

)

1 .6393

MW

9-28

structure of Free molecules in the gas phase

6679X_S09.indb 28

4/11/08 3:45:36 PM

background image

Formula

Structure

Bond distances in Å and angles in degrees

Method

SeOF

2

Se—O

1 .576

Se—F

1 .730

MW

∠OSeF

104 .82

∠FSeF

92 .22

SeO

2

Se—O (r

e

)

1 .6076

∠OSeO (θ

e

)

113 .83

MW

SeO

3

D

3h

Se—O

1 .69

ED

Se

2

Se—Se (r

e

)

2 .1660

UV

Se

6

six-membered ring with

chair conformation

Se—Se

2 .34

∠SeSeSe

102

ED

SiBrF

3

C

3v

Si—F

1 .559

Si—Br

2 .156

∠FSiBr

108 .5

MW

SiBrH

3

C

3v

Si—Br

2 .210

Si—H

1 .486

∠HSiBr

107 .8

MW

SiCl

Si—Cl (r

e

)

2 .058

UV

SiClH

3

C

3v

Si—Cl

2 .049

Si—H

1 .486

∠HSiCl

107 .9

MW

SiCl

4

T

4

Si—Cl

2 .019

ED

SiF

Si—F

1 .6008

UV

SiFH

3

C

3v

Si—F

1 .593

Si—H

1 .486

∠HSiH

110 .63

MW, IR

SiF

2

Si—F (r

e

)

1 .590

∠FSiF (θ

e

)

100 .8

MW

SiF

3

H

C

3v

Si—H ((r

e

)

1 .4468

Si—F (r

e

)

1 .5624

∠HSiF (θ

e

)

110 .64

MW

SiF

4

T

d

Si—F

1 .553

ED

SiH

Si—H (r

e

)

1 .5201

UV

SiH

3

I

C

3v

Si—I

2 .437

Si—H

1 .486

∠HSH

107 .8

MW

SiH

4

T

d

Si—H

1 .4798

IR

SiN

Si—N (r

e

)

1 .572

UV

SiO

Si—O (r

e

)

1 .5097

MW

SiS

Si—S (r

e

)

1 .9293

MW

SiSe

Si—Se (r

e

)

2 .0583

MW

Si

2

Si—Si (r

e

)

2 .246

UV

Si

2

Cl

6

Si—Si

2 .32

Si—Cl

2 .009

∠ClSiCl

109 .7

ED

Si

2

F

6

Si—Si

2 .317

Si—F

1 .564

∠FSiF

108 .6

ED

Si

2

H

6

Si—Si

2 .331

Si—H

1 .492

ED

∠SiSiH

110 .3

∠HSiH

108 .6

SnBr

2

Sn—Br (r

e

)

2 .501

∠BrSnBr

100 .0

ED

SnCl

Sn—Cl (r

e

)

2 .361

UV

SnCl

2

Sn—Cl (r

e

)

2 .335

∠ClSnCl

99 .1

ED

SnCl

4

T

d

Sn—Cl

2 .281

ED

SnF

Sn—F (r

e

)

1 .944

UV

SnH

Sn—H (r

e

)

1 .7815

UV

SnH

4

T

d

Sn—H

1 .711

R, IR

SnI

2

Sn—I (r

e

)

2 .688

ED

SnO

Sn—O (r

e

)

1 .8325

MW,UV

SnS

Sn—S (r

e

)

2 .2090

MW

SnSe

Sn—Se (r

e

)

2 .3256

MW

SnTe

Sn—Te (r

e

)

2 .5228

MW

SrBr

Sr—Br (r

e

)

2 .7352

UV

SrBr

2

quasilinear

Sr—Br

2 .783

ED

SrCl

2

Sr—Cl

2 .630

∠ClSrCl

155

ED

SrF

Sr—F (r

e

)

2 .0754

UV

SrH

Sr—H (r

e

)

2 .1456

UV

SrI

Sr—I (r

e

)

2 .9436

UV

SrI

2

linear

Sr—I

3 .01

ED

SrO

Sr—O (r

e

)

1 .9198

MW

SrOH

Sr—O

2 .111

O—H

0 .922

UV

SrS

Sr—S (r

e

)

2 .4405

UV

TaBr

5

D

3h

Ta—Br

eq

2 .412

Ta—Br

ax

2 .473

ED

TaCl

5

D

3h

Ta—Cl

eq

2 .268

Ta—Cl

ax

2 .315

ED

TaO

Ta—O (r

e

)

1 .6875

UV

TbCl

3

C

3v

Tb—Cl

2 .476

ED

TeF

6

O

h

Te—F

1 .815

ED

TeH

Te—H

1 .74

UV

TeO

Te—O (r

e

)

1 .825

UV

Te

2

Te—Te (r

e

)

2 .5574

UV

ThCl

4

T

d

Th—Cl

2 .567

ED

structure of Free molecules in the gas phase

9-29

6679X_S09.indb 29

4/11/08 3:45:37 PM

background image

Formula

Structure

Bond distances in Å and angles in degrees

Method

ThF

4

T

d

Th—F

2 .124

ED

ThO

Th—O (r

e

)

1 .84032

UV

TiBr

4

T

d

Ti—Br

2 .339

ED

TiCl

3

D

3h

Ti—Cl

2 .208

ED

TiCl

4

T

d

Ti—Cl

2 .170

ED

TiF

Ti—F

1 .8342

MW

TiF

4

T

d

Ti—F

1 .756

ED

TiI

3

D

3h

Ti—I

2 .568

ED

TiI

4

T

d

Ti—I

2 .546

ED

TiO

Ti—O (r

e

)

1 .620

UV

TiS

Ti—S (r

e

)

2 .0825

UV

TlBr

Tl—Br (r

e

)

2 .6182

MW

TlCl

Tl—Cl (r

e

)

2 .4848

MW

TlF

Tl—F (r

e

)

2 .0844

MW

TlH

Tl—H (r

e

)

1 .870

UV

TlI

Tl—I (r

e

)

2 .8137

MW

UCl

4

T

d

U—Cl

2 .506

ED

UCl

6

O

h

U—F

2 .46

ED

UF

4

T

d

U—F

2 .059

ED

UF

6

O

h

U—F

2 .000

ED

UI

3

C

3v

U—I

2 .88

ED

VCl

3

O

C

3v

V—O

1 .570

V—Cl

2 .142

∠ClVCl

111 .3

ED, MW

VBr

4

T

d

(Jahn-Teller effect)

V—Br

2 .276

ED

VCl

4

T

d

(Jahn-Teller effect)

V—Cl

2 .138

ED

VF

3

D

3h

V—F

1 .751

ED

VF

5

V—F

eq

1 .709

V—F

ax

1 .736

ED

VMo

V—Mo

1 .876

UV

VO

V—O (r

e

)

1 .5893

UV

WClF

5

F

b

F

b

F

b

F

a

W

F

b

Cl

W—F (av .)

1 .836

W—Cl

2 .251

∠F

a

WF

b

88 .7

MW

WCl

5

D

3h

W—Cl

eq

2 .243

W—Cl

ax

2 .293

ED

WCl

6

O

h

W—Cl

2 .290

ED

WF

4

O

C

4v

W—O

1 .666

W—F

1 .847

∠FWF

86 .2

ED

WF

6

O

h

W—F

1 .833

ED

XeF

2

linear

Xe—F

1 .977

IR

XeF

4

D

4h

Xe—F

1 .94

ED

XeF

6

O

h

Xe—F

1 .890

ED

XeO

4

T

d

Xe—O

1 .736

ED

YCl

Y—Cl

2 .385

UV

YCl

3

Y—Cl

2 .437

ED

YF

Y—F (r

e

)

1 .9257

UV

YI

3

Y—I

2 .817

ED

YO

Y—O (r

e

)

1 .790

UV

YbBr

Yb—Br (r

e

)

2 .6454

UV

YbH

Yb—H (r

e

)

2 .0526

UV

ZnBr

2

linear

Zn—Br

2 .204

ED

ZnCl

2

linear

Zn—Cl

2 .072

ED

ZnF

Zn—F (r

e

)

1 .7677

MW

ZnF

2

linear

Zn—F

1 .742

[Zn—F (r

e

)]

1 .729

ED

ZnH

Zn—H (r

e

)

1 .5949

UV

ZnI

2

linear

Zn—I

2 .401

ED

ZrBr

4

T

d

Zr—Br

2 .465

ED

ZrCl

4

T

d

Zr—Cl

2 .328

ED

ZrF

4

T

d

Zr—F

1 .902

ED

ZrI

4

T

d

Zr—I

2 .660

ED

ZrO

Zr—O (r

e

)

1 .7116

UV

9-30

structure of Free molecules in the gas phase

6679X_S09.indb 30

4/11/08 3:45:38 PM

background image

part 2. molecules containing carbon

Compound

Structure

Bond distances in Å and angles in degrees

Method

Acetaldehyde

H

O

C

b

H

3

C

a

C

a

—O

1 .210

C

a

—C

b

1 .515

ED, MW

C

a

—H

1 .128

C

b

—H

1 .107

∠C

b

C

a

O

124 .1

∠C

b

C

a

H

115 .3

∠HC

b

H

109 .8

Acetamide

CH

3

CONH

2

C—O

1 .220

C—N

1 .380

ED

C—C

1 .519

N—H

1 .022

C—H

1 .124

∠CCN

115 .1

∠NCO

122 .0

Acetic acid

H

O

b

O

a

C

CH

3

C—C

1 .520

C—O

a

1 .214

C—O

b

1 .364

ED

C—H

1 .10

∠CCO

a

126 .6

∠CCO

b

110 .6

Acetone

(CH

3

)

2

CO

C—C

1 .520

C—O

1 .213

C—H

1 .103

ED, MW

Symmetry axis of each CH

3

is

tilted 2° from the C—C bond

∠CCC

116 .0

∠HCH

108 .5

Acetonitrile

CH

3

CN (C

3v

)

C—N

1 .159

C—C

1 .468

C—H

1 .107

ED, MW

∠CCH

109 .7

Acetonitrile-N-oxide

CH

3

CNO (C

3v

)

C—C

1 .442

C—N

1 .169

N—O

1 .217

MW

Acetyl chloride

CH

3

COCl

C—C

1 .506

C—O

1 .187

C—H

1 .105

ED, MW

C—Cl

1 .798

∠HCH

108 .6

∠OCCl

121 .2

∠CCCl

111 .6

Acetylene

HC≡CH

C—C (r

e

)

1 .203

C—H (r

e

)

1 .060

IR

Acrolein

H

C

b

C

a

H

H

O

C

c

H

(planar s-trans form)

C

a

—C

b

1 .345

C

b

—C

c

1 .484

C

c

—O

1 .217

ED, MW

C

a

—H

1 .10

C

c

—H

1 .13

∠HC

c

C

b

114

∠CaCbCc

120 .3

∠C

b

C

c

O

123 .3

Other CCH

(av .)

122

Acrylonitrile

C

a

—C

b

1 .343

C

b

—C

c

1 .438

C

c

—N

1 .167

ED, MW

C

a

—H

1 .114

∠C

b

C

c

N

178

∠C

a

C

b

C

c

121 .7

∠HCC

120

Allene

CH

2

=C=CH

2

C—C

1 .3084

C—H

1 .087

∠HCH

118 .2

IR

Aniline

C

6

H

5

NH

2

C—C

1 .392

C—N

1 .431

N—H

0 .998

MW

∠HNH

113 .9

dihedral angle

between NH

2

plane and N—

C bond

140 .6

Azetidine

NH

CH

2

CH

2

CH

2

C—N

1 .482

C—C

1 .553

ED

C—H

1 .107

N—H

1 .03

∠CCC

86 .9

∠CCN

85 .8

∠CNC

92 .2

dihedral angle

between CCC

and CNC

planes

147

Benzamide

C

6

H

5

—C

a

ONH

2

C—C (ring)

1 .401

C (ring)—C

a

1 .511

C

a

—O

1 .225

ED

C—H

1 .112

C—N

1 .380

∠CCN

117 .8

∠CCC (ring)

120(ass .) ∠CCO

121 .2

Benzene

C

6

H

6

C—C

1 .399

C—H

1 .101

ED, IR

p-Benzoquinone

C

a

—O

1 .225

C

a

—C

b

1 .481

C

b

—C

b

1 .344

ED

∠C

b

C

a

C

b

118 .1

structure of Free molecules in the gas phase

9-31

6679X_S09.indb 31

4/11/08 3:45:41 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Bicyclo[1 .1 .0]butane

H

c

H

c

H

a

C

b

C

b

H

b

C

a

C

a

H

b

H

a

C

a

—C

a

1 .497

C

a

—C

b

1 .498

C

a

—H

a

1 .071

MW

C

b

—H

b

1 .093

C

b

—H

c

1 .093

∠H

b

C

b

H

c

115 .6

∠C

b

C

a

H

a

130 .4

∠C

a

C

a

H

a

128 .4

∠C

a

C

b

C

a

60 .0

dihedral angle

between the

two C

a

C

a

C

b

planes

121 .7

Bicyclo[2 .2 .1]heptane

See preceeding structure

C

a

—C

b

1 .54

C

b

—C

b

1 .56

C

a

—C

c

1 .56

ED

C

7

H

12

C—C (av .)

1 .549

∠C

a

C

c

C

a

93 .1

dihedral angle

between the

two C

a

C

b

C

b

C

a

planes

113 .1

Bicyclo[2 .2 .0]hexa-2,5-

diene

C

b

H

C

b

H

H

C

a

C

a

H

HC

b

HC

b

C

b

—C

b

1 .345

C

a

—C

a

1 .574

C

a

—C

b

1 .524

ED

dihedral angle

between the

two C

a

C

b

C

b

C

a

planes

117 .3

Bicyclo[2 .2 .2]octane

HC

a

(C

b

H

2

C

b

H

2

)

3

C

a

H

C

a

—C

b

1 .54

C

b

—C

b

1 .55

C—C (av .)

1 .542

ED

large-amplitude torsional

motion about D

3h

symmetry

axis

∠C

a

C

b

C

b

109 .7

Bicyclo[1 .1 .1]pentane

C

5

H

8

C—C

1 .557

∠CCC

74 .2

ED

Bicyclo[2 .1 .0]pentane

C

c

H

2

C

a

H

C

b

H

2

C

a

H

C

b

H

2

C

a

—C

a

1 .536

C

b

—C

b

1 .565

C

a

—C

c

1 .507

MW

C

a

—C

b

1 .528

dihedral angle

between the

C

a

C

a

C

b

C

b

and

C

a

C

a

C

c

planes

112 .7

Biphenyl

C—C (intra-

ring)

1 .396

C—C (inter-

ring)

1 .49

ED

torsional

dihedral angle

≈40

4,4´-Bipyridyl

C—C (inter-

ring)

1 .465

C—C (intra-

ring)

1 .375

C—N (intra-

ring)

1 .375

ED

torsional

dihedral angle

between the

two rings

≈37

Bis(cyclopentadienyl)

beryllium

(C

5

H

5

)

2

Be (C

5v

)

Be—(cyclopen-

tadienyl plane)

1 .470,

1 .92

C—C

1 .423

ED

Bis(cyclopentadienyl) iron (C

5

H

5

)

2

Fe (D

5h

)

Fe—C

2 .064

C—C

1 .440

C—H

1 .104

ED

Bis(cyclopentadienyl) lead (C

5

H

5

)

2

Pb (D

5h

)

Pb—C

2 .79

C—C

1 .430

ED

dihedral angle

between the

two C

5

H

5

planes

40~50

(The two

rings are

not

parallel)

Bis(cyclopentadienyl)

manganese

(C

5

H

5

)

2

Mn (D

5h

)

Mn—C

2 .383

C—C

1 .429

ED

Bis(cyclopentadienyl)

nickel

(C

5

H

5

)

2

Ni (D

5h

)

Ni—C

2 .196

C—C

1 .430

ED

Bis(cyclopentadienyl)

ruthenium

(C

5

H

5

)

2

Ru (D

5h

)

Ru—C

2 .196

C—C

1 .439

ED

Bis(cyclopentadienyl) tin

(C

5

H

5

)

2

Sn (D

5h

)

Sn—C

2 .71

C—C

1 .431

C—H

1 .14

ED

Borane carbonyl

BH

3

CO (C

3v

)

C—O

1 .131

B—C

1 .540

B—H

1 .194

MW

∠BCO

180

∠HBH

113 .9

9-32

structure of Free molecules in the gas phase

6679X_S09.indb 32

4/11/08 3:45:44 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Bromobenzene

C

d

H

C

c

H

C

b

H

HC

c

HC

b

C

a

Br

C

a

—C

b

1 .42

C

b

—C

c

1 .375

C

c

—C

d

1 .401

MW

C—Br

1 .85

C—H

1 .072

∠C

b

C

a

C

b

117 .4

Bromochloroacetylene

ClC≡CBr

C—Cl

1 .636

C—Br

1 .784

C—C

1 .206

ED

Bromoiodoacetylene

IC≡CBr

C—I

1 .972

C—Br

1 .795

C—C

1 .206

ED

Bromomethane

CH

3

Br

C—Br (r

e

)

1 .933

C—H (r

e

)

1 .086

∠HCH (θ

e

)

111 .2

MW, IR

Bromomethyl

CH

2

Br (planar)

C—Br

1 .848

C—H

1 .084

∠HCH (ass .) 124 .5 MW

Bromomethylene

CHBr (bent)

C—Br

1 .857

C—H

1 .110

∠HCH

101 .0

UV

Bromomethylmercury

CH

3

HgBr (C

3v

)

C—Hg

2 .07

Hg—Br

2 .406

MW

1,3-Butadiene

C

a

H

2

C

b

H C

b

H

C

a

H

2

(C

2h

)

C

a

—C

b

1 .349

C

b

—C

b

1 .467

C—H (av .)

1 .108

ED

∠CCC

124 .4

∠C

b

C

a

H

120 .9

1,3-Butadiyne

HC

a

≡C

b

C

b

≡C

a

H

(linear)

C

a

—C

b

1 .218

C

b

—C

b

1 .384

C—H

1 .09

ED

Butane

CH

3

CH

2

CH

2

CH

3

C—C

1 .531

C—H

1 .117

∠CCC

113 .8

ED

∠CCH

111 .0

dihedral angle

for the gauche

conformer

65

2,3-Butanedione

CH

3

COCOCH

3

C—O

1 .215

C—C (av .)

1 .524

C—H

1 .108

ED

trans conformer

∠CCC

116 .2

∠CCO

119 .5

2-Butanone

C

d

H

3

C

b

H

2

C

c

O

C

a

H

3

C—C (av .)

1 .518

C

c

—O

1 .219

C—H (av .)

1 .102

ED

trans conformer

∠C

a

C

b

C

c

113 .5

∠C

b

C

c

O

121 .9

∠C

d

C

c

O

121 .9

1,2,3-Butatriene

H

2

C

a

=C

b

=C

b

=C

a

H

2

(D

2h

)

C

a

—C

b

1 .32

C

b

—C

b

1 .28

C—H

1 .08

ED

cis-2-Butene

C

a

H

3

C

b

H=C

b

HC

a

H

3

C

a

—C

b

1 .506

C

b

—C

b

1 .346

∠C

a

C

b

C

b

125 .4

ED

trans-2-Butene

C

a

H

3

C

b

H=C

b

HC

a

H

3

C

a

—C

b

1 .508

C

b

—C

b

1 .347

∠C

a

C

b

C

b

123 .8

ED

1-Buten-3-yne

H

d

C

d

C

c

H

c

C

b

C

a

H

b

H

a

C

a

—C

b

1 .344

C

b

—C

c

1 .434

C

c

—C

d

1 .215

ED, MW

C

a

—H

a

1 .11

C

d

—H

d

1 .09

∠C

a

C

b

C

c

123 .1

∠C

b

C

c

C

d

178

∠H

a

C

a

C

b

119

∠H

b

C

a

C

b

122

∠H

c

C

b

C

a

122

∠C

c

C

d

H

d

182

tert-Butyl chloride

(CH

3

)

3

CCl

C—C

1 .528

C—Cl

1 .828

C—H

1 .102

ED, MW

∠CCCl

107 .3

∠CCH

110 .8

∠CCC

111 .6

2-Butyne

C

a

H

3

—C

b

≡C

b

—C

a

H

3

C

b

—C

b

1 .214

C

a

—C

b

1 .468

C—H

1 .116

ED

∠C

b

C

a

H

110 .7

Carbon dimer

C

2

C—C (r

e

)

1 .2425

UV

Carbon trimer

C

3

(linear)

C—C

1 .277

UV

Carbon dioxide

CO

2

(linear)

C—O (r

e

)

1 .1600

IR

Carbon disulfide

CS

2

(linear)

C—S (r

e

)

1 .5526

IR

Carbon monobromide

CBr

C—Br

1 .8209

UV

Carbon monoselenide

CSe

C—Se (r

e

)

1 .67609

UV

Carbon monosulfide

CS

C—S (r

e

)

1 .5349

MW

Carbon monoxide

CO

C—O (r

e

)

1 .1283

MW

Carbon oxyselenide

OCSe (linear)

C—O

1 .159

C—Se

1 .709

MW

Carbon oxysulfide

OCS (linear)

C—O (r

e

)

1 .1578

C—S (r

e

)

1 .5601

MW

Carbon phosphide

CP

C—P (r

e

)

1 .562

UV

Carbon sulfide selenide

SCSe (linear)

C—S

1 .553

C—Se

1 .693

MW

Carbon sulfide telluride

SCTe (linear)

C—S

1 .557

C—Te

1 .904

MW

Carbon suboxide

OCCCO (linear)

C—C

1 .289

C—O

1 .163

ED

structure of Free molecules in the gas phase

9-33

6679X_S09.indb 33

4/11/08 3:45:47 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Carbonyl bromide

COBr

2

C—O

1 .178

C—Br

1 .923

∠BrCBr

112 .3

ED, MW

Carbonyl chloride

COCl

2

C—O

1 .179

C—Cl

1 .742

∠ClCCl

111 .8

ED, MW

Carbonyl chloride fluoride COClF

C—O

1 .173

C—F

1 .334

C—Cl

1 .725

ED, MW

∠ClCO

127 .5

∠FCCl

108 .8

Carbonyl dicyanide

CO(CN)

2

C—O

1 .209

C—C

1 .466

C—N

1 .153

ED, MW

∠CCC

115

∠CCN

180

Carbonyl fluoride

COF

2

C—O

1 .172

C—F

1 .3157

∠FCF

107 .71 ED, MW

Chloroacetylene

HC≡CCl

C—Cl

1 .6368

C—C

1 .2033

C—H

1 .0550 MW

Chlorobenzene

C

6

H

5

Cl

C—C

1 .400

C—Cl

1 .737

C—H

1 .083

ED

Chlorocyanoacetylene

ClC≡C—CN

C—Cl

1 .624

C—N

1 .160

C—C

1 .205

ED

C—CN

1 .362

Chloroethane

C—C

1 .528

C—Cl

1 .802

C—H

1 .103

ED, MW

∠CCCl

110 .7

∠H

b

C

b

H

b

109 .8

∠H

a

C

a

H

a

109 .2

∠C

b

C

a

H

a

110 .6

C

a

—H

a

= C

b

H

b

(ass .)

2-Chloroethanol

ClCH

2

CH

2

OH

C—O

1 .413

C—C

1 .519

C—Cl

1 .801

ED

(gauche)

O—H

1 .033 C—H

1 .093

∠CCCl

110 .7

∠CCO 113 .8

dihedral

angle of

internal

rotation

62 .4

Chloroiodoacetylene

ClC≡CI

C—Cl

1 .63

C—I

1 .99

C—C

1 .209

(ass)

MW

Chloromethane

CH

3

Cl

C—Cl

1 .785

C—H

1 .090

∠HCH

110 .8

MW, IR

Chloromethylidyne

CCl

C—Cl

1 .6512

UV

Chloromethylmercury

CH

3

HgCl (C

3v

)

C—Hg

2 .06

Hg—Cl

2 .282

MW

trans-1-Chloropropene

CH

3

CH=CHCl

C—Cl

1 .728

∠CCCl

121 .9

MW

3-Chloropropene

CH

2

ClCH=CH

2

cis conformer

C—Cl

1 .811

∠CCCl

115 .2

MW

skew conformer

C—Cl

1 .809

∠CCCl

109 .6

dihedral

angle of

internal

rotation

122 .4

Chlorotrifluoromethane

CClF

3

(C

3v

)

C—Cl

1 .752

C—F

1 .325

∠FCF

108 .6

ED, MW

Chromium carbonyl

Cr (CO)

6

Cr—C

1 .92

C—O

1 .16

∠CrCO

180

ED

Cobalt cyanide

CoC≡N

Co—C

1 .883

C—N

1 .131

MW

Copper cyanide

CuC≡N

Cu—C

1 .832

C—N

1 .158

MW

Cyanamide

H

2

N

a

CN

b

N

a

—C

1 .346

C—N

b

1 .160

N—H

1 .00

MW

∠HNH

114

dihedral angle

between NH

2

plane and N—

C bond

142

Cyanide

CN

C—N (r

e

)

1 .1718

MW

Cyanoacetylene

HC

a

≡C

b

—C

c

N

C

a

—C

b

1 .205

C

b

—C

c

1 .378

C—H

1 .058

MW

C

c

—N

1 .159

Cyanocyclopropane

C

3

H

5

C

a

N

C—C (ring)

1 .513

C— C

a

1 .472

C

a

—N

1 .157

MW

C—H

1 .107

∠C

a

CH

119 .6

∠HCH

114 .6

Cyanogen

N≡C—C≡N (linear)

C—N

1 .163

C—C

1 .393

ED

Cyanogen azide

N≡C—N=N≡N

C—N

1 .312

N=N

1 .252

N≡N

1 .133

MW

(planar)

C≡N

1 .164

∠CNN

120 .2

∠NCN

176 .0

Cyanogen bromide

BrCN (linear)

C—N (r

e

)

1 .157

C—Br (r

e

)

1 .790

MW

Cyanogen chloride

ClCN (linear)

C—Cl (r

e

)

1 .629

C—N (r

e

)

1 .160

MW

Cyanogen fluoride

FCN (linear)

C—F

1 .262

C—N

1 .159

MW

Cyanogen iodide

ICN (linear)

C—I

1 .995

C—N

1 .159

MW

1-Cyano-2-propyne

HC

a

≡C

b

C

c

H

2

C

d

≡N

C

a

—C

b

1 .207

(ass .)

C

b

—C

c

(ass .)

1 .465

C

c

—C

d

1 .454

MW

C

d

—N

1 .159

(ass .)

C

a

—H(ass .)

1 .057

C

c

—H(ass .) 1 .090

∠C

b

C

c

C

d

113 .4

∠HC

c

H

109 .4

(ass .)

∠C

b

C

c

H

111 .3

9-34

structure of Free molecules in the gas phase

6679X_S09.indb 34

4/11/08 3:45:48 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Cyclobutane

(CH

2

)

4

C—C

1 .555

C—H

1 .113

ED

dihedral angle

between the

two CCC planes

145

Cyclobutanone

C

a

O

C

b

H

2

C

c

H

2

C

b

H

2

C

a

—C

b

1 .527

C

b

—C

c

1 .556

MW

∠C

b

C

a

C

b

93 .1

∠C

a

C

b

C

c

88 .0

Cyclobutene

C

a

—C

a

1 .566

C

b

—C

b

1 .342

C

a

—C

b

1 .517 MW

C

a

—H

1 .094

C

b

—H

1 .083

∠C

a

C

b

C

b

94 .2

∠C

b

C

b

H

133 .5

∠HC

a

H

109 .2

∠C

a

C

a

H

114 .5

∠C

a

C

a

C

b

85 .8

dihedral

angle

between

CH

2

plane

and

C

a

—C

a

bond

135 .8

2,4,6-Cycloheptatrien-1-

one

C

b

H

C

c

H

C

d

H

C

d

H

HC

c

HC

b

C

a

O

(C

2v

)

C

a

—C

b

1 .45

C

b

—C

c

1 .36

C

c

—C

d

1 .46

ED

C

d

—C

d

1 .34

C

a

—O

1 .23

∠C

b

C

a

C

b

122

∠C

a

C

b

C

c

133

∠C

b

C

c

C

d

126

∠C

c

C

d

C

d

130

Cyclohexane

C

6

H

12

(chair form)

C—C

1 .536

C—H

1 .119

∠CCC

111 .3

ED

Cyclohexene

C

b

H

2

C

c

H

2

C

c

H

2

H

2

C

b

C

a

H

HC

a

half-chair form (C

2

)

C

a

—C

a

1 .334

C

a

—C

b

1 .50

C

b

—C

c

1 .52

ED

C

c

—C

c

1 .54

∠C

a

C

a

C

b

123 .4

∠C

a

C

b

C

c

112 .0

∠C

b

C

c

C

c

110 .9

Cyclooctatetraene

tub form (D

2d

)

C

a

—C

b

1 .476

C

a

—C

a

1 .340

C

b

—C

b

1 .340

ED

C—H

1 .100

∠C

b

C

a

C

a

126 .1

∠C

a

C

b

C

b

126 .1

dihedral angle

between

C

a

C

a

C

a

C

a

and

C

a

C

b

C

b

C

a

planes

136 .9

1,3-Cyclopentadiene

HC

c

HC

b

C

c

H

C

b

H

C

a

H

2

C

a

—C

b

1 .509

C

b

—C

c

1 .342

C

c

—C

c

1 .469

MW

∠C

a

C

b

C

c

109 .3

∠C

b

C

c

C

c

109 .4

∠C

b

C

a

C

b

102 .8

Cyclopentadienylindium

C—In

2 .621

C—C

1 .426

(C

5v

)

ED

Cyclopentane

(CH

2

)

5

C—C

1 .546

C—H

1 .114

∠CCH

111 .7

ED

Cyclopentene

C

c

H C

c

H

H

2

C

b

C

b

H

2

C

a

H

2

C

a

—C

b

1 .546

C

b

—C

c

1 .519

C

c

—C

c

1 .342

ED

∠C

a

C

b

C

c

103 .0

∠C

b

C

c

C

c

110 .0

∠C

b

C

a

C

b

104 .0

dihedral angle

between

C

b

C

a

C

b

and

C

b

C

c

C

c

C

b

planes

151 .2

Cyclopropane

(CH

2

)

3

C—C

1 .512

C—H

1 .083

∠HCH

114 .0

R

structure of Free molecules in the gas phase

9-35

6679X_S09.indb 35

4/11/08 3:45:52 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Cyclopropanone

C

a

O

H

2

C

b

H

2

C

b

C

a

—C

b

1 .475

C

b

—C

b

1 .575

C

a

—O

1 .191

MW

C—H

1 .086

∠C

a

C

b

C

b

57 .7

∠HC

b

H

114

dihedral angle

between CH

2

plane

and C

b

—C

b

bond

151

Cyclopropene

C

b

H

HC

b

C

a

H

2

C

a

—C

b

1 .505

C

b

—C

b

1 .293

C

a

—H

1 .085

MW

C

b

—H

1 .072

∠C

b

C

b

H

150

∠HC

a

H

114 .3

Cyclopropenone

C

b

C

c

C

a

O

H

H

C

a

—C

b

(r

s

)

1 .423

C

b

—C

c

(r

s

)

1 .349

C

a

—O (r

s

)

1 .212

MW

C

2v

C—H (r

s

)

1 .079

∠HC

b

C

c

(θ

s

)

144 .3

C

b

C

a

C

c

(θ

s

)

56 .6

Decalin

C

10

H

18

C—C (av .)

1 .530

C—H (av .)

1 .113

∠CCC (av .) 111 .4 ED

Diazirine

N

N

CH

2

C—N

1 .482

N—N

1 .228

C—H

1 .09

MW

∠HCH

117

Diazoacetonitrile

N

c

N

b

N

a

C

a

C

b

H

C

a

—C

b

1 .424

C

a

—N

a

1 .165

C

b

—N

b

1 .280

MW

N

b

—N

c

1 .132

C—H

1 .082

∠C

a

C

b

H

117

∠C

a

C

b

N

b

119 .5

Diazomethane

CH

2

N

2

C—N

1 .32

N—N

1 .12

C—H

1 .075

MW, IR

∠HCH

126 .0

1,2-Dibromoethane

CH

2

BrCH

2

Br

C—C

1 .506

C—Br

1 .950

C—H

1 .108

ED

∠CCBr

109 .5

∠CCH

110

Dibromomethane

CH

2

Br

2

C—Br

1 .924

C—H

1 .08

∠HCBr

109

ED

∠BrCBr

113 .2

2,2’-Dichlorobiphenyl

C

6

H

4

Cl—C

6

H

4

Cl

C—C (rings)

1 .398

C—C (inter-

ring)

1 .495

C—H

1 .10

ED

C—Cl

1 .732

∠CCCl

121 .4

∠CCH

126

dihedral angle

between the

two rings

(defined as 0 for

cis conformer)

74

trans-1,4-

Dichlorocyclohexane

C

6

H

10

Cl

2

equatorial:

axial:

C—C

1 .530

C—Cl

1 .810

C—H

1 .102

ED

∠CCC

111 .5

∠CCCl

108 .6

∠HCCl

111 .5

∠CCCl

110 .6

∠HCCl

107 .6

1,1-Dichloroethane

CHCl

2

CH

3

C—C

1 .540

C—Cl

1 .766

MW

∠ClCCl

112 .0

∠CCCl

111 .0

1,2-Dichloroethane

CH

2

ClCH

2

Cl

C—C

1 .531

C—Cl

1 .790

C—H

1 .11

ED

∠CCCl

109 .0

∠CCH

113

1,1-Dichloroethene

CH

2

=CCl

2

(C

2v

)

C—C

1 .32 (ass .) C—Cl

1 .73

MW

∠ClCC

123

cis-1,2-Dichloroethene

CHCl=CHCl

C—C

1 .354

C—Cl

1 .718

ED

∠ClCC

123 .8

Dichloromethane

CH

2

Cl

2

C—Cl (r

e

)

1 .765

C—H (r

e

)

1 .087

MW, IR

∠ClCCl (θ

e

)

112 .0

∠HCH (θ

e

)

111 .5

9-36

structure of Free molecules in the gas phase

6679X_S09.indb 36

4/11/08 3:46:02 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

1,2-Dicyanocyclobutene

C

a

C

c

C

H

2

C

b

H

2

C

N

C

N

C

2v

C

a

—C

a’

1 .361

C

a

—C

b

1 .515

C

b

—C

b’

1 .567

MW

C

a

—C

c

1 .420

C

c

—N

1 .157

C

b

—H

1 .088

∠C

a’

C

a

C

b

93 .9

∠C

a

C

b

C

b’

86 .1

∠C

a

C

c

N

178 .2

∠C

b

C

a

C

c

133 .3

∠C

a

C

b

H

114 .7

∠C

a’

C

a

C

b

H

115 .8

Difluorocyanamide

F

2

N

b

—C≡N

a

C—N

a

1 .158

C—N

b

1 .386

N

b

—F

1 .399

MW

∠N

a

CN

b

174

∠CN

b

F

105 .4

∠FN

b

F

102 .8

Difluorocyclopropenone

C

b

C

c

C

a

O

F

F

C

2v

C

a

—C

b

1 .453

C

b

—C

c

1 .324

C

a

—O

1 .192

MW

C—F

1 .314

∠FC

b

C

c

145 .7

Difluorodimethylsilane

(CH

3

)

2

SiF

2

C—Si

1 .844

Si—F

1 .585

C—H (ass .) 1 .093

MW

∠CSiC

115 .2

∠FSiF

106 .1

∠SiCH (ass .) 110 .8

1,1-Difluoroethane

CH

3

CHF

2

C—C

1 .498

C—F

1 .364

C—H (av .)

1 .081

ED

∠CCF

110 .7

∠CCH (av .)

111 .0

dihedral

angle

between

CCF planes

118 .9

1,2-Difluoroethane

CH

2

FCH

2

F

C—C

1 .503

C—F

1 .389

C—H

1 .103

ED

∠CCF

110 .3

∠CCH

111

dihedral

angle of

internal

rotation

109

1,1-Difluoroethene

CH

2

=CF

2

C—C

1 .340

C—F

1 .315

C—H

1 .091

ED, MW

∠CCF

124 .7

∠CCH

119 .0

cis-1,2-Difluoroethene

CHF=CHF

C—C

1 .33

C—F

1 .342

C—H

1 .099

ED, MW

∠CCF

122 .0

∠CCH

124 .1

Difluoromethane

CH

2

F

2

C—F

1 .357

C—H

1 .093

MW

∠FCF

108 .3

∠HCH

113 .7

Dimethoxymethane

C

a

—O

1 .432

C

b

—O

1 .382

C—H (av .)

1 .108

ED

∠COC

114 .6

∠OCO

114 .3

∠OCH

110 .3

Dimethylamine

(CH)

2

NH

C—N

1 .455

N—H

1 .00

C—H

1 .106

ED

∠CNC

111 .8

∠CNH

107

∠NCH

112

∠HCH

107

Dimethylberyllium

(CH

3

)

2

Be (CBeC linear)

C—Be

1 .698

C—H

1 .127

∠BeCH

113 .9

ED

Dimethyl cadmium

(CH

3

)

2

Cd

C—Cd

2 .112

∠HCH

108 .4

R

Dimethyl carbonate

(C

a

H

3

O

a

)

2

C

b

=O

b

C

b

—O

b

1 .209

C

b

—O

a

1 .34

C

a

—O

a

1 .42

ED

∠O

a

C

b

O

a

107

∠C

b

O

a

C

a

114 .5

Dimethylcyanamide

(C

a

H

3

)

2

N

a

—C

b

≡N

b

C

b

—N

b

1 .161

C

a

—N

a

1 .463

C

b

—N

a

1 .338

ED

trans-Dimethyldiazene

CH

3

N=NCH

3

C—N

1 .482

N—N

1 .247

∠CNN

112 .3

ED

∠C

a

NC

a

115 .5

∠C

a

NC

b

116 .0

1,2-Dimethyldiborane

H

t

H

b

H

t

B

B

CH

3

H

b

CH

3

B—B

1 .799

B—C

1 .580

ED

B—H

b

(cis)

1 .358

B—H

b

(trans) 1 .365

B—H

t

1 .24

∠BBC (cis)

122 .6

∠BBC (trans) 121 .8

Dimethyl diselenide

(CH

3

)

2

Se

2

C—Se

1 .95

Se—Se

2 .326

C—H

1 .13

ED

∠CSeSe

98 .9

∠HCSe

108

CSeSeC

dihedral

angle

88

Dimethyl disulfide

(CH

3

)

2

S

2

C—S

1 .816

S—S

2 .029

C—H

1 .105

ED

∠SSC

103 .2

∠SCH

111 .3

CSSC

dihedral

angle

85

structure of Free molecules in the gas phase

9-37

6679X_S09.indb 37

4/11/08 3:46:05 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

S,S´-Dimethyl

dithiocarbonate

O

C

a

H

3

SC

b

SC

a

H

3

syn-syn conformer

C

a

—S

1 .802

C

b

—S

1 .777

C

b

—O

1 .206

ED

∠OCS

124 .9

∠CSC

99 .3

Dimethyl ether

(CH

3

)

2

O

C—O

1 .416

C—H

1 .121

ED

∠COC

112

∠HCH

108

N,N’-Dimethylhydrazine

CH

3

NH—NHCH

3

C—N

1 .46

N—N

1 .42

N—H

1 .03

ED

C—H

1 .12

∠NNC

112

CNNC

dihedral

angle

90

Dimethyl mercury

(CH

3

)

2

Hg

C—Hg

2 .083

C—H

1 .160

(ass .)

Hg···H

2 .71

ED

Dimethylphosphine

(CH

3

)

2

PH

C—P

1 .848

P—H

1 .419

MW

∠CPC

99 .7

∠CPH

97 .0

2,2-Dimethylpropanenitrile (C

c

H

3

)

3

C

b

—C

a

≡N

C

a

—C

b

1 .495

C

b

—C

c

1 .536

C

a

—N

1 .159

MW

∠C

c

C

b

C

c

110 .5

Dimethyl selenide

(CH

3

)

2

Se

C—Se

1 .943

C—H

1 .093

MW

∠CSeC

96 .2

∠SeCH

108 .7

∠HCH

110 .3

Dimethyl silane

(CH

3

)

2

SiH

2

C—Si

1 .868

C—H

1 .089

Si—H

1 .482

MW

∠CSiC

110 .9

∠CSiH

109 .5

∠SiCH

110 .9

∠HSiH

107 .8

Dimethyl sulfide

(CH

3

)

2

S

C—S

1 .802

C—H

1 .090

ED, MW

∠CSC

98 .80

∠HCH

109 .3

Dimethyl sulfone

(CH

3

)

2

SO

2

C—S

1 .771

S—O

1 .435

C—H

1 .114

ED

∠CSC

102

∠OSO

121

Dimethyl sulfoxide

(CH

3

)

2

SO

C—S

1 .799

S—O

1 .485

C—H

1 .081

MW

∠CSC

96 .6

∠CSO

106 .7

∠HCH

110 .3

dihedral angle

between SCC

plane and S—O

bond

115 .5

Dimethyl zinc

(CH

3

)

2

Zn

C—Zn

1 .929

∠HCH

107 .7

R

1,4-Dioxane

CH

2

CH

2

O

CH

2

CH

2

O

chair form

C—C

1 .523

C—O

1 .423

C—H

1 .112

ED

∠CCO

109 .2

∠COC

112 .45

Ethane

C

2

H

6

C—C

1 .5351

C—H

1 .0940

∠CCH

111 .17 MW

staggered conformation

C—C (r

e

)

1 .522

1,2-Ethanediamine

H

2

NCH

2

CH

2

NH

2

C—C

1 .545

C—N

1 .469

C—H

1 .11

ED

gauche conformer

∠CCN

110 .2

dihedral angle

between NCC

and CCN

planes

64

Ethanethiol

C

b

H

3

—C

a

H

2

—SH

C

a

—C

b

1 .530

C

a

—S

1 .829

S—H

1 .350

MW

C

a

—H

1 .090

C

b

—H

1 .093

∠C

a

SH

96 .4

∠C

b

C

a

S

108 .3

∠C

b

C

a

H

109 .6

∠C

a

C

b

H

109 .7

Ethanol

C

b

H

3

C

a

H

2

OH

C—C

1 .512

C—O

1 .431

O—H

0 .971

MW

staggered conformation

C

a

—H

1 .10

C

b

—H

1 .09

∠COH

105

∠CCO

107 .8

∠C

b

C

a

H

111

∠C

a

C

b

H

110

Ethylene

CH

2

=CH

2

C—C (r

s

)

1 .329

C—H (r

s

)

1 .082

∠HCH (θ

s

)

117 .2

MW, IR

Ethyleneimine

H

c

H

c

H

b

C

C

N

H

b

H

a

C—C

1 .481

N—C

1 .475

MW

C—H

1 .084

N—H

1 .016

∠CNC

60 .3

∠H

a

NC

109 .3

∠H

b

CH

c

115 .7

∠H

b

CC

117 .8

∠H

b

CN

118 .3

∠H

c

CC

119 .3

∠H

c

CN

114 .3

Ethyl methyl ether

C

2

H

5

OCH

3

C—C

1 .520

C—O (av .)

1 .418

C—H (av .)

1 .118

ED

∠COC

111 .9

∠OCC

109 .4

∠HCH

109 .0

9-38

structure of Free molecules in the gas phase

6679X_S09.indb 38

4/11/08 3:46:07 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Ethyl methyl sulfide

C

2

H

5

SCH

3

C—C

1 .536

C—S (av .)

1 .813

C—H

1 .111

ED

gauche conformer

∠CSC

97

∠SCC

114 .0

∠HCH

110

Fluoroketene

HFC=C=O

C—C

1 .317

C—O

1 .167

C—F

1 .360

MW

C—H

1 .102

∠CCO

178 .0

∠CCF

119 .5

∠CCH

122 .3

Fluoromethane

CH

3

F

C—F (r

e

)

1 .382

C—H (r

e

)

1 .095

∠HCH (θ

e

)

110 .45 MW, IR

Fluoromethylidyne

CF

C—F (r

e

)

1 .2718

UV

(Fluoromethylidyne)

phosphine

FC≡P

C—F

1 .285

C—P

1 .541

MW

2-Fluoropropane

CH

3

CHFCH

3

C—C

1 .522

C—F

1 .398

MW

∠CCC

113 .4

∠CCF

108 .2

Formaldehyde

H

2

CO

C—O

1 .208

C—H

1 .116

∠HCH

116 .5

MW

Formaldehyde azine

H

2

C=N—N=CH

2

C—N

1 .277

N—N

1 .418

C—H

1 .094

ED

trans conformer

∠CNN

111 .4

∠HCN

120 .7

Formaldehyde oxime

OH

c

N

C

H

b

H

a

C—N

1 .276

N—O

1 .408

O—H

c

0 .956

MW

C—H

a

1 .085

C—H

b

1 .086

∠CNO

110 .2

∠H

a

CN

121 .8

∠H

b

CN

115 .6

∠NOH

c

102 .7

Formamide

H

a

O

C

N

H

b

H

c

C—N

1 .368

C—O

1 .212

C—H

a

1 .125

ED, MW

N—H

1 .027

∠CNH (av .)

119 .2

∠NCO

125 .0

Formic acid

H

O

b

O

a

C

H

(planar)

C—O

a

1 .202

C—O

b

1 .343

O

b

—H

0 .972

MW

C—H

1 .097

∠O

a

CO

b

124 .9

∠HCO

a

124 .1

∠CO

b

H

106 .3

Formic acid dimer

C—O

a

1 .220

C—O

b

1 .323

O

a

···O

b

2 .703

ED

∠O

a

CO

b

126 .2

∠CO

a

O

b

108 .5

Formyl radical

HC=O

C—O

1 .1712

C—H

1 .110

∠HCO

127 .43 MW

Fulvene

C

a

—C

d

1 .349

C

a

—C

b

1 .470

C

b

—C

c

1 .355

MW

C

c

—C

c

1 .476

C

b

—H

1 .078

C

c

—H

1 .080

C

d

—H

1 .13

∠C

b

C

a

C

b

106 .6

∠C

b

C

c

C

c

109

∠C

a

C

b

C

c

107 .7

∠C

a

C

b

H

124 .7

∠C

b

C

c

H

126 .4

∠HC

d

H

117

Furan

H

b

H

b

C

b

C

b

C

a

C

a

H

a

O

H

a

C

a

—C

b

1 .361

C

b

—C

b

1 .431

C

a

—O

1 .362

MW

C

a

—H

a

1 .075

C

b

—H

b

1 .077

∠C

a

C

b

C

b

106 .1

∠C

b

C

a

O

110 .7

∠C

a

OC

a

106 .6

∠C

b

C

b

H

b

128 .0

∠OC

a

H

a

115 .9

Furfural

C

a

—C

e

1 .458

C

e

—O

b

1 .250

C

e

—H

1 .088

MW

∠C

a

C

e

O

121 .6

∠C

e

C

a

C

b

133 .9

∠C

a

C

e

H

116 .9

trans conformer

(with respect to

O

a

and O

b

atoms)

Glycolaldehyde

H

a

O

a

C

a

H

b

H

b

C

b

O

b

H

c

C

a

—C

b

1 .499

C

a

—O

a

1 .437

C

b

—O

b

1 .209

MW

C

a

—H

b

1 .093

C

b

—H

c

1 .102

O

a

—H

a

1 .051

∠C

a

C

b

O

b

122 .7

∠C

b

C

a

O

a

111 .5

∠C

a

C

b

H

c

115 .3

∠C

b

C

a

H

b

109 .2

∠H

b

C

a

H

b

107 .6

∠C

a

O

a

H

a

101 .6

∠H

b

C

a

O

a

109 .7

Glyoxal

CHOCHO

C—C

1 .526

C—O

1 .212

C—H

1 .132

ED, UV

trans conformer

∠CCO

121 .2

∠HCO

112

Hexachloroethane

Cl

3

CCCl

3

C—C

1 .56

C—Cl

1 .769

∠CCCl

110 .0

ED

2,4-Hexadiyne

C

a

H

3

C

b

≡C

c

C

c

≡C

b

C

a

H

3

C

a

—C

b

1 .450

C

b

—C

c

1 .208

C

c

—C

c

1 .377

ED

C

a

—H

1 .09

Hexafluoroethane

F

3

CCF

3

C—C

1 .545

CF

1 .326

∠CCF

109 .8

ED

structure of Free molecules in the gas phase

9-39

6679X_S09.indb 39

4/11/08 3:46:11 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Hexafluoropropene

CF

2

=CFCF

3

C—C

1 .513

C=C

1 .329

(ass .)

C—F

1 .329

(ass .)

ED

∠CCC

127 .8

∠FCC (CF)

120

∠FCC(CF

2

) 124

∠FCC(CF

3

)

110

trans-1,3,5-Hexatriene

H

2

C

a

=C

b

HC

c

H=C

c

HC

b

H=C

a

H

2

C

a

—C

b

1 .337

C

b

—C

c

1 .458

C

c

—C

c

1 .368

ED

∠C

a

C

b

C

c

121 .7

∠C

b

C

c

C

c

124 .4

Hydrogen cyanide

HCN (linear)

C—H (r

e

)

1 .0655

C—N (r

e

)

1 .1532

MW, IR

Iminocyanide radical

HNCN

N—H

1 .034

N···N

2 .470

UV

∠HNC

116 .5

∠NCN

~180

Iodoacetylene

IC≡CH

C—C

1 .218

C—I

1 .980

C—H

1 .059

IR

Iodocyanoacetylene

IC

a

≡C

b

C

c

≡N

C

a

—C

b

1 .207

C

b

—C

c

1 .370

C

c

—N

1 .160

MW

(linear)

C

a

—I

1 .985

Iodomethane

CH

3

I

C—I (r

e

)

2 .132

C—H (r

e

)

1 .084

∠HCH (θ

e

)

111 .2

MW, IR

Iron pentacarbonyl

Fe(CO)

5

(D

3h

)

Fe—C (av .)

1 .821

(Fe—C)

eq

(Fe—C)

ax

0 .020

C—O (av .)

1 .153

ED

Isobutane

(C

b

H

3

)

3

C

a

H

C

a

—C

b

1 .535

C

a

—H

1 .122

C

b

—H

1 .113

ED, MW

∠C

b

C

a

C

b

110 .8

∠C

a

C

b

H

111 .4

Isobutene

H

H

c

C

b

C

c

C

a

H

3

C

a

H

3

C

a

—C

b

1 .508

C

b

—C

c

1 .342

C

a

—H

1 .119

ED, MW

C

c

—H

c

1 .10

∠C

a

C

b

C

a

115 .6

∠C

a

C

b

C

c

122 .2

∠C

b

C

c

H

121

∠HC

a

C

b

(av .)

111 .4

∠HC

a

H

107 .9

∠H

c

C

c

H

c

118 .5

Isocyanic acid

HNCO (bent)

N—C

1 .209

C—O

1 .166

N—H

0 .986

MW

∠NCO

180

∠HNC

128 .0

Isocyanomethane

C

a

H

3

—N≡C

b

C

a

—N

1 .424

N— C

b

1 .166

C

a

—H

1 .102

MW

∠NC

a

H

109 .12

∠HCH

123 .0

Isofulminic acid

HCNO (linear)

C—N

1 .161

N—O

1 .207

H—C

1 .027

MW

Isothiocyanic acid

HNCS

N—C

1 .216

C—S

1 .561

N—H

0 .989

MW

∠NCS

180

∠HNC

135 .0

Ketene

H

2

C=C=O

C—C

1 .315

C—O

1 .163

MW

C—H

1 .090

∠HCH

123 .5

Malononitrile

CH

2

(CN)

2

C—C

1 .480

C—N

1 .147

C—H

1 .091

MW

∠CCC

110 .4

∠CCN

176 .6

∠HCH

108 .4

Methane

CH

4

C—H (r

e

)

1 .0870

IR

Methanethioamide

H

b

H

a

C N

H

c

S

C—S

1 .626

C—N

1 .358

C—H

c

1 .10

MW

N—H

a

1 .002

N—H

b

1 .007

∠NCS

125 .3

∠H

a

NC

117 .9

∠H

b

NC

120 .4

∠SCH

c

127

∠H

a

NH

b

121 .7

∠NCH

c

108

Methanethiol

CH

3

SH

C—S

1 .819

S—H

1 .34

C—H

1 .09

MW

∠HSC

96 .5

∠HCH

109 .8

angle

between

CH

3

symmetry

axis and C—

S bond

2 .2

Methanol

CH

3

OH

C—O

1 .4246

C—H

1 .0936

O—H

0 .9451 MW

∠COH

108 .53

∠HCH

108 .63

angle

between

CH

3

symmetry

axis and C—

O bond

3 .27

Methyl

·CH

3

planar (D

3h

)

C—H

1 .076

R

N-Methylacetamide

C

c

H

3

H

N

C

b

O

H

3

C

a

C

a

—C

b

1 .520

C

b

—N

1 .386

C

c

—N

1 .469

ED

C

b

—O

1 .225

C—H

1 .107

∠C

b

NC

c

119 .7

∠NC

b

O

121 .8

∠C

a

C

b

N

114 .1

9-40

structure of Free molecules in the gas phase

6679X_S09.indb 40

4/11/08 3:46:14 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Methylamine

CH

3

NH

2

C—N

1 .471

N—H

1 .019

C—H

1 .095

MW

∠HNC

110 .3

∠HNH

106 .6

∠HCH

108 .1

angle between

CH

3

symmetry

axis and

C—N bond

4 .3

Methyl azide

N

a

N

b

N

c

CH

3

NNN linear

C—N

a

1 .468

N

a

—N

b

1 .216

N

b

—N

c

1 .113

ED

C—H

1 .09

∠CN

a

N

b

116 .8

3-Methyl-3H-diazirine

CH

3

CH

N

N

C—C

1 .501

C—N

1 .481

N—N

1 .235

MW

∠NCN

49 .3

dihedral angle

between CNN

plane and C—

C bond

122 .3

Methylene

:CH

2

C—H (r

e

)

1 .0748

∠HCH (θ

e

)

133 .84

IR,MW

Methylenecyclopropane

C

a

H

2

C

b

C

c

H

2

C

c

H

2

C

a

—C

b

1 .332

C

b

—C

c

1 .457

C

c

—C

c

1 .542

MW

C

c

—H

1 .09

∠C

c

C

b

C

c

63 .9

∠HC

a

H

114 .3

∠HC

c

H

113 .5

dihedral angle

between C

c

H

2

plane and C

c

C

c

bond

150 .8

3-Methyleneoxetane

C

a

H

2

C

b

C

c

H

2

C

c

H

2

O

C

a

—C

b

1 .33

C

b

—C

c

1 .52

C

c

—O

1 .45

MW

C—H

1 .09 (ass) ∠HC

c

H

114 (ass) ∠HC

a

H

120

(ass)

∠C

c

C

b

C

c

87

Methylenephosphine

CH

c

H

t

=PH

C—P

1 .673

C—H

c

1 .09

C—H

t

1 .09

MW

planar

P—H

1 .420

∠CPH

97 .4

∠HCH

117 .2

∠PCH

c

124 .4

∠PCH

t

118 .4

Methyl formate

H

b

O

b

C

b

O

a

C

a

H

3

C

b

—O

b

1 .206

C—O (av .)

1 .393

C

a

—H

1 .08

ED

C

b

—H

1 .101

(ass .)

∠COC

114

∠O

a

C

b

O

b

127

∠O

a

C

a

H

110

Methylgermane

CH

3

GeH

3

C—Ge

1 .945

Ge—H

1 .529

C—H

1 .083

MW

∠HGeH

109 .3

∠HCH

108 .4

Methyl hypochlorite

CH

3

OCl

C—O

1 .389

O—Cl

1 .674

C—H

1 .103

MW

∠COCl

112 .8

∠HCH

109 .6

Methylidyne

:CH

C—H (r

e

)

1 .1198

UV

Methylidynephosphine

HCP

C—P (r

e

)

1 .5398

C—H (r

e

)

1 .0692

MW

Methylketene

O

C

a

C

b

H

C

c

H

3

C

a

—C

b

1 .306

C

b

—C

c

1 .518

C

a

—O

1 .171

MW

C

b

—H

1 .083

C

c

—H

1 .10

∠OC

a

C

b

180 .5

∠C

a

C

b

C

c

122 .6

∠C

a

C

b

H

113 .7

∠C

c

C

b

H

123 .7

∠HCH

109 .2

Methyl nitrate

O

b

O

H

b

N

C

O

a

H

a

H

a

C—O

1 .437

C—H

a

1 .10

C—H

b

1 .09

MW

O—N

1 .402

N—O

a

1 .205

N—O

b

1 .208

∠CON

112 .7

∠ONO

a

118 .1

∠ONO

b

112 .4

∠OCH

a

110

∠OCH

b

103

Methyloxirane

O

C

c

H

2

C

a

H

3

C

b

H

C

a

—C

b

1 .51

∠C

a

C

b

C

c

121 .0

dihedral

angle

between

C

b

C

c

O plane

and C

a

C

b

bond

123 .8

MW

Methylphosphine

CH

3

PH

2

C—P

1 .858

C—H

1 .094

ED

Methylphosphonic

difluoride

CH

3

POF

2

C—P

1 .770

P—O

1 .444

P—F

1 .545

ED,MW

∠OPC

117 .8

∠FPC

103 .7

∠FPF

99 .2

Methylsilane

CH

3

SiH

3

C—Si

1 .867

Si—H

1 .485

C—H

1 .093

MW

∠HCH

107 .7

∠HSiH

108 .3

Methylstannane

CH

3

SnH

3

C—Sn

2 .143

Sn—H

1 .700

MW

structure of Free molecules in the gas phase

9-41

6679X_S09.indb 41

4/11/08 3:46:18 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Methyl thiocyanate

S C

b

N

C

a

H

3

S—C

a

1 .824

S—C

b

1 .684

C

b

—N

1 .170

MW

C—H

1 .081

∠C

a

SC

b

99 .0

∠HCH

110 .6

∠HCS

108 .3

Methyltrioxorhenium

CH

3

ReO

3

Re—C

2 .074

Re—O

1 .703

C—H

1 .088

MW

∠ReCH

108 .9

∠CReO

106 .4

Molybdenum carbide

MoC

Mo—C

1 .676

UV

Molybdenum carbonyl

Mo(CO)

6

(O

h

)

Mo—C

2 .063

C—O

1 .145

ED

Naphthalene

C

a

—C

b

1 .37

C

b

—C

b

1 .41

C

a

—C

c

1 .42

ED

C

c

—C

c

1 .42

C—C (av .)

1 .40

∠C

a

C

c

C

c

119 .4

Neopentane

C(CH

3

)

4

C—C

1 .537

C—H

1 .114

∠CCH

112

ED

Nickel carbonyl

Ni(CO)

4

(T

d

)

Ni—C

1 .839

C—O

1 .121

IR

Nickel monocarbonyl

NiCO (linear)

Ni—C

1 .64

C—O

1 .19

IR

Nickel cyanide

NiC≡N (linear)

Ni—C

1 .828

C—N

1 .158

MW

Nitromethane

CH

3

NO

2

C—N

1 .489

N—O

1 .224

C—H

1 .088

(ass .)

MW

∠ONO

125 .3

∠NCH

107

N-Nitrosodimethylamine

(CH

3

)

2

NNO

C—N

1 .461

N—O

1 .235

N—N

1 .344

ED

∠CNC

123 .2

∠CNN

116 .4

∠ONN

113 .6

Nitrosomethane

CH

3

NO

C—N

1 .49

N—O

1 .22

C—H

1 .084

MW

∠CNO

112 .6

∠NCH

109 .0

2,5-Norbornadiene

HC

b

HC

b

C

a

H

C

b

H

C

b

H

C

a

H

H

2

C

c

(C

2v

)

C

a

—C

b

1 .535

C

b

—C

b

1 .343

C

a

—C

c

1 .573

ED

C—H

1 .12

∠C

a

C

c

C

a

94

dihedral angle

between the

two C

a

C

b

C

b

C

a

planes

115 .6

1,2,5-Oxadiazole

(planar)

C—C

1 .421

C—N

1 .300

O—N

1 .380

MW

C—H

1 .076

∠CCH

130 .2

∠NCH

120 .9

∠CCN

109 .0

∠NON

110 .4

∠ONC

105 .8

1,3,4-Oxadiazole

(planar)

C—O

1 .348

C—N

1 .297

N—N

1 .399

MW

C—H

1 .075

∠OCH

118 .1

∠NCH

128 .5

∠CNN

105 .6

∠COC

102 .0

∠OCN

113 .4

Oxalic acid

H

O

b

O

a

C C

O

a

O

b

H

C—C

1 .544

C—O

a

1 .205

C—O

b

1 .336

ED

O

b

—H

1 .05

∠CCO

a

123 .1

∠O

a

CO

b

125 .0

∠CO

b

H

104

Oxalyl chloride

Cl

O

O

C

C

Cl

C—C

1 .534

C—O

1 .182

C—Cl

1 .744

ED

∠CCO

124 .2

∠CCCl

111 .7

68% trans,

32% gauche

at 0°C

Oxetane

C—C

1 .546

C—O

1 .448

C—H (av .)

1 .090

MW

∠CCC

85

∠COC

92

∠OCC

92

∠HCH (av .)

109 .9

9-42

structure of Free molecules in the gas phase

6679X_S09.indb 42

4/11/08 3:46:22 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Oxirane

O

CH

2

CH

2

C—C

1 .466

C—O

1 .431

C—H

1 .085

MW

∠HCH

116 .6

dihedral angle

between NH

2

plane and N—

C bond

158 .0

Phenol

C—C (av .)

1 .397

C

a

—O

1 .364

O—H

0 .956

MW

C

b

—H

1 .084

C

c

—H

1 .076

C

d

—H

1 .082

∠COH

109 .0

Phosphirane

CH

2

PH

CH

2

C—C

1 .502

C—P

1 .867

P—H

1 .43

MW

C—H

1 .09

∠CPC

47 .4

∠HPC

95 .2

∠HCH

114 .4

∠CCH

118

dihedral

angle

between

PCC plane

and PH

bond

95 .7

Piperazine

NH

NH

CH

2

CH

2

CH

2

CH

2

(C

2h

)

C—C

1 .540

C—N

1 .467

C—H

1 .110

ED

∠CNC

109 .0

∠CCN

110 .4

Palladium carbide

PdC

Pd—C

1 .712

UV

Platinum carbide

PtC

Pt—C (r

e

)

1 .6767

UV

Potassium carbide

KC

K—C

2 .528

MW

Propane

C

3

H

8

C—C

1 .532

C—H

1 .107

ED

∠CCC

112

∠HCH

107

Propene

C

a

—C

b

1 .341

C

b

—C

c

1 .506

ED, MW

C

a

—H

a

1 .104

C

c

—H

d

1 .117

∠C

a

C

b

C

c

124 .3

∠C

b

C

a

H

a,b,c

121 .3

∠C

b

C

c

H

d

110 .7

2-Propenoyl chloride

Cl

O

H

C

b

C

c

C

a

H

H

C

a

—C

b

1 .35

C

b

—C

c

1 .48

C

c

—Cl

1 .82

MW

C

c

—O

1 .19

C—H

1 .086

(ass .)

∠C

a

C

b

C

c

123

∠C

b

C

c

Cl

116

∠C

b

C

c

O

127

∠C

a

C

b

H

120 (ass .) ∠C

b

C

a

H

121 .5

(ass .)

2-Propynal

H

a

C

a

≡C

b

—C

c

H

c

O

C

a

—C

b

1 .211

C

b

—C

c

1 .453

C

c

—O

1 .214

ED, MW

(planar)

C

a

—H

a

1 .085

C

c

—H

c

1 .130

∠C

a

C

b

C

c

178 .6

∠C

b

C

c

O

124 .2

∠C

b

C

c

H

c

113 .7

Propyne

H

3

C

c

—C

b

≡C

a

H

C

c

—C

b

1 .459

C

b

—C

a

1 .206

MW

C

a

—H

1 .056

C

c

—H

1 .105

∠HC

c

C

b

110 .2

Propynal isocyanide

H

3

C

c

—C

b

≡C

a

—N≡C

C

c

—C

b

(r

s

)

1 .456

C

b

—C

a

(r

s

)

1 .206

C

a

—N (r

s

)

1 .316

MW

N—C (r

s

)

1 .175

C

c

—H (r

s

)

1 .090

∠HC

c

C

b

(θ

s

) 110 .7

Pyrazine

C—C

1 .339

C—N

1 .403

C—H

1 .115

ED

∠CCH

123 .9

∠CCN

115 .6

Pyridazine

N

N

HC

a

C

a

H

H

C

b

H

C

b

C

a

—C

b

1 .393

C

b

—C

b

1 .375

C

a

—N

1 .341

ED, MW

N—N

1 .330

∠NCC

123 .7

∠NNC

119 .3

structure of Free molecules in the gas phase

9-43

6679X_S09.indb 43

4/11/08 3:46:26 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Pyridine

C

a

—C

b

1 .395

C

b

—C

c

1 .394

C

a

—N

1 .340

MW

C

a

—H

a

1 .084

C

b

—H

b

1 .081

C

c

—H

c

1 .077

∠C

a

C

b

C

c

118 .5

∠C

b

C

c

C

b

118 .3

∠C

c

C

b

H

b

121 .3

∠C

a

NC

a

116 .8

∠NC

a

C

b

123 .9

∠NC

a

H

a

115 .9

Pyrimidine

(C

2v

assumed)

C—C

1 .393

C—N

1 .340

ED

∠NCN

127 .6

∠CNC

115 .5

Pyrrole

H

b

C

b

C

b

H

b

H

a

C

a

C

a

H

a

H

N

C

a

—C

b

1 .382

C

b

—C

b

1 .417

C

a

—N

1 .370

MW

C

a

—H

a

1 .076

C

b

—H

b

1 .077

N—H

0 .996

∠C

a

C

b

C

b

107 .4

∠C

a

NC

a

109 .8

∠NC

a

C

b

107 .7

∠C

b

C

b

H

127 .1

∠NC

a

H

a

121 .5

Pyruvonitrile

N

C

c

O

C

b

C

a

H

3

C

a

—C

b

1 .518

C

b

—C

c

1 .477

C—H

1 .12

ED, MW

C—N

1 .17

C—O

1 .208

∠HCH

109 .2

∠C

a

C

b

C

c

114 .2

∠C

a

C

b

O

124 .5

∠CCN

179

Ruthenium carbide

RuC

Ru—C

1 .607

UV

Silacyclobutane

CH

2

SiH

2

CH

2

CH

2

C—C

1 .571

C—Si

1 .885

C—H

1 .100

ED

Si—H

1 .47

∠CCC

99 .8

∠CSiC

77 .2

∠SiCC

84 .8

dihedral angle

between CCC

and CSiC

planes

146

Silaethene

H

2

Si=CH

2

Si—C (r

e

)

1 .704

Si—H (r

e

)

1 .467

C—H (r

e

)

1 .082

MW

∠HCSi

122 .0

∠HSiC

122 .4

Silicon dicarbide

CSiC (ring)

C—C(r

s

)

1 .269

Si—C (r

s

)

1 .832

∠CSiC (θ

s

)

40 .5

MW

Silylchloroacetylene

SiH

3

C≡CCl

C—C

1 .234

Si—C

1 .812

C—Cl

1 .620

ED

Si—H

1 .488

∠HSiC

109 .4

Silyl cyanide

SiH

3

C≡N

Si—C

1 .850

C—N

1 .156

Si—H

1 .487

ED,MW

∠HSiC

107 .25

Sodium carbide

NaC

Na—C

2 .232

MW

Spiro[2 .2]pentane

C

b

H

2

H

2

C

b

C

a

C

b

H

2

H

2

C

b

(D

2d

)

C

b

—C

b

1 .52

C

a

—C

b

1 .47

C—H

1 .09

ED

∠C

b

C

a

C

b

62

∠HCH

118

Strontium methyl

SrCH

3

Sr—C

2 .487

C—H (ass .)

1 .104

∠HCH

105 .8

UV

Succinonitrile

CH

2

CN

CH

2

CN

C—C

1 .561

C—C(N)

1 .465

C—N

1 .161

ED

C—H

1 .09

∠CCC

110 .4

dihedral

angle of

CCCC for

gauche

conformer

75

Tetrabromomethane

CBr

4

(T

d

)

C—Br

1 .935

ED

Tetrachloroethene

CCl

2

=CCl

2

C—C

1 .354

C—Cl

1 .718

∠ClCCl

115 .7

ED

Tetrachloromethane

CCl

4

(T

d

)

C—Cl

1 .767

ED

Tetracyanoethene

(CN)

2

C=C(CN)

2

C—C

1 .435

C=C

1 .357

C—N

1 .162

ED

∠CC=C

121 .1

2,2,4,4-Tetrafluoro-1,3-

dithietane

F

2

C

CF

2

S

S

(D

2h

assumed)

C—S

1 .785

C—F

1 .314

∠CSC

83 .2

ED

∠FCS

113 .7

Tetrafluoroethene

CF

2

=CF

2

C—C

1 .31

C—F

1 .319

∠CCF

123 .8

ED

Tetrafluoromethane

CF

4

(T

d

)

C—F

1 .323

ED

9-44

structure of Free molecules in the gas phase

6679X_S09.indb 44

4/11/08 3:46:30 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Tetrahydrofuran

O

CH

2

CH

2

CH

2

CH

2

C—C

1 .536

C—O

1 .428

C—H

1 .115

ED

Tetrahydropyran

O

H

2

C

CH

2

CH

2

H

2

C

H

2

C

chair form

C—C

1 .531

C—O

1 .420

C—H

1 .116

ED

∠COC

111 .5

∠OCC

111 .8

∠CCC (C)

108

∠CCC (O)

111

Tetrahydrothiophene

CH

2

CH

2

CH

2

CH

2

S

C—C

1 .536

C—S

1 .839

C—H

1 .120

ED

∠CCC

105 .0

∠CSC

93 .4

∠SCC

106 .1

Tetraiodomethane

CI

4

(T

d

)

C—I

2 .15

ED

Tetramethylgermane

(CH

3

)

4

Ge

C—Ge

1 .945

C—H

1 .12

∠GeCH

108

ED

Tetramethyl lead

(CH

3

)

4

Pb

C—Pb

2 .238

ED

Tetramethylsilane

(CH

3

)

4

Si

C—Si

1 .875

C—H

1 .115

∠HCH

109 .8

ED

Tetramethylstannane

(CH

3

)

4

Sn

C—Sn

2 .144

C—H

1 .12

ED

1,2,5-Thiadiazole

CH

HC

N

N

S

(planar)

C—C

1 .420

C—N

1 .328

S—N

1 .631

MW

C—H

1 .079

∠CCN

113 .8

∠NSN

99 .6

∠CCH

126 .2

1,3,4-Thiadiazole

N

N

CH

HC

S

(planar)

C—S

1 .721

C—N

1 .302

N—N

1 .371

MW

C—H

1 .08

∠CSC

86 .4

∠SCN

114 .6

∠CCN

112 .2

∠NCH

123 .5

∠SCH

121 .9

Thietane

C—C

1 .549

C—S

1 .847

C—H (av .)

1 .100

ED, MW

∠CSC

76 .8

∠HCH (av .)

112

dihedral

angle

between

CCC and

CSC planes

154

Thiirane

S

H

2

C

H

2

C

C—C

1 .484

C—S

1 .815

C—H

1 .083

MW

∠CSC

48 .3

∠CCS

65 .9

∠HCH

116

dihedral angle

between CH

2

plane and C—C

bond

152

Thioacetaldehyde

C

a

S

H

3

C

b

H

C

a

—S (r

s

)

1 .610

C

a

—C

b

(r

s

)

1 .506

MW

C

a

—H (r

s

)

1 .089

C

b

—H (r

s

)

1 .094

(av .)

∠C

b

C

a

S (θ

s

)

125 .3

∠C

b

C

a

H (θ

s

)

119 .4

∠HC

b

C

a

(θ

s

) 110 .6

(av .)

Thiocarbonyl fluoride

F

2

CS

C—S

1 .589

C—F

1 .315

∠FCF

107 .1

MW

Thioformaldehyde

CH

2

S

C—S

1 .611

C—H

1 .093

∠HCH

116 .9

MW

Thioketene

H

2

C=C=S

C—C (r

s

)

1 .314

C—S (r

s

)

1 .554

C—H (r

s

)

1 .080

IR

C

2v

∠HCH (θ

s

)

119 .8

Thiophene

C

a

—C

b

1 .370

C

b

—C

b

1 .423

C

a

—S

1 .714

MW

C

a

—H

a

1 .078

C

b

—H

b

1 .081

∠C

a

C

b

C

b

112 .5

∠C

a

SC

a

92 .2

∠SC

a

C

b

115 .5

∠SC

a

H

a

119 .9

∠C

b

C

b

H

b

124 .3

Toluene

C

6

H

5

—CH

3

C—C (ring)

1 .399

C—CH

3

1 .524

C—H (av .)

1 .11

ED

1,1,1-Tribromoethane

CH

3

CBr

3

C—C

1 .51 (ass .) C—Br

1 .93

C—H

1 .095

(ass .)

MW

∠BrCBr

111

∠CCBr

108

∠CCH

109 .0

(ass .)

structure of Free molecules in the gas phase

9-45

6679X_S09.indb 45

4/11/08 3:46:35 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Tribromomethane

CHBr

3

(C

3v

)

C—Br

1 .924

C—H

1 .11

∠BrCBr

111 .7

ED, MW

Tri-tert-butyl methane

HC

a

[C

b

(C

c

H

3

)

3

]

3

C

a

—C

b

1 .611

C

b

—C

c

1 .548

C—H

1 .111

ED

∠C

a

C

b

C

c

113 .0

Trichloroacetonitrile

CCl

3

CN

C—C

1 .460

C—N

1 .165

C—Cl

1 .763

ED

∠ClCCl

110 .0

1,1,1-Trichloroethane

CH

3

CCl

3

C—C

1 .541

C—Cl

1 .771

C—H

1 .090

MW

∠CCCl

109 .6

∠ClCCl

109 .4

∠HCH

110 .0

∠CCH

108 .9

Trichlorofluoromethane

CCl

3

F

C—Cl

1 .754

C—F

1 .362

∠ClCCl

111

MW

Trichloromethane

CHCl

3

C—Cl

1 .758

C—H

1 .100

∠ClCCl

111 .3

MW

Trichloromethylgermane

CH

3

GeCl

3

C—Ge

1 .89

Ge—Cl

2 .132

C—H

1 .103

(ass .)

ED, MW

∠ClGeCl

106 .4

∠GeCH

110 .5

(ass .)

Trichloromethylsilane

CH

3

SiCl

3

C—Si

1 .876

Si—Cl

2 .021

MW

Trichloromethylstannane

CH

3

SnCl

3

C—Sn

2 .10

Sn—Cl

2 .304

C—H

1 .100

ED

1,1,1-Trichloro-2,2,2-

trifluoroethane

CF

3

CCl

3

(staggered configuration)

C—C

1 .54

C—F

1 .33

C—Cl

1 .77

MW

∠CCF

110

∠CCCl

109 .6

∠CSnCl

113 .9

∠ClSnCl

104 .7

∠SnCH

108

Triethylenediamine

(D

3h

)

C—C

1 .562

C—N

1 .472

∠CNC

108 .7

ED

∠NCC

110 .2

Trifluoroacetic acid

C—C

1 .546

C—O

a

1 .192

C—O

b

1 .35

ED

C—F

1 .325

O—H

0 .96 (ass .)

∠CCO

a

126 .8

∠CCO

b

111 .1

∠CCF

109 .5

1,1,1-Trifluoroethane

CH

3

CF

3

C—C

1 .494

C—F

1 .340

C—H

1 .081

ED

Trifluoroiodomethane

CF

3

I (C

3v

)

C—F

1 .330

C—I

2 .138

∠FCF

108 .1

ED, MW

Trifluoromethane

CHF

3

(C

3v

)

C—F

1 .332

C—H

1 .098

∠FCF

108 .8

MW

Trifluoromethanesulfonyl

fluoride

CF

3

SO

2

F

a

C—S

1 .835

C—F (av .)

1 .325

S—O

1 .410

ED

S —F

a

1 .543

∠CSF

a

95 .4

∠CSO

108 .5

∠OSO

124 .1

∠FCF

109 .8

Trifluoromethylimino-

sulfurdifluoride

CF

3

N=SF

2

C—N

1 .409

S—N

1 .477

S—F

1 .594

ED,MW

C—F

1 .331

∠CNS

127 .2

∠NSF

112 .7

∠FSF

92 .8

∠FCF

108 .1

Trifluoromethyl peroxide

CF

3

OOCF

3

O—O

1 .42

C—O

1 .399

C—F

1 .320

ED

∠COO

107

∠FCF

109 .0

COOC

dihedral

angle of

internal

rotation

123

∠CCF

119 .2

∠CCH

112

Trimethyl aluminium

(CH

3

)

3

Al

C—Al

1 .957

C—H

1 .113

ED

∠CAlC

120

∠AlCH

111 .7

Trimethylamine

(CH

3

)

3

N

C—N

1 .458

C—H

1 .100

ED

∠CNC

110 .9

∠HCH

110

Trimethylarsine

(CH

3

)

3

As

C—As

1 .979

∠CAsC

98 .8

∠AsCH

111 .4

ED

Trimethyl bismuth

(CH

3

)

3

Bi

C—Bi

2 .263

C—H

1 .07

∠CBiC

97 .1

ED

Trimethylborane

(CH

3

)

3

B

C—B

1 .578

C—H

1 .114

ED

∠CBC

120

∠BCH

112 .5

Trimethylphosphine

(CH

3

)

3

P

C—P

1 .847

C—H

1 .091

ED

∠CPC

98 .6

∠PCH

110 .7

1,3,5-Trioxane

C

H

2

CH

2

H

2

C

O

O

O

C—O

1 .422

∠OCO

112 .2

∠COC

110 .3

MW

9-46

structure of Free molecules in the gas phase

6679X_S09.indb 46

4/11/08 3:46:37 PM

background image

Compound

Structure

Bond distances in Å and angles in degrees

Method

Triphenylamine

(C

6

H

5

)

3

N (C

3

)

C—C

1 .392

C—N

1 .42

∠CNC

116

ED

torsional

dihedral angle

of phenyl rings

47

Tungsten carbide

WC

W—C

1 .7135

UV

Tungsten carbonyl

W(CO)

6

(O

h

)

W—C

2 .059

C—O

1 .149

ED

Vanadium carbonyl

V(CO)

6

(O

h

, involving

dynamic Jahn-Teller effect)

V—C

2 .015

C—O

1 .138

ED

Vinyl bromide

See Vinyl chloride

C—C

1 .3256

C—Br

1 .8835

C—H

a

1 .0780 MW

C—H

b

1 .0804

C—H

c

1 .0794

∠CCBr

122 .62

∠CCH

a

124 .34

∠CCH

b

119 .28

∠CCH

c

122 .03

Vinyl chloride

H

a

Cl

C

C

H

b

H

c

C—C

1 .3262

C—Cl

1 .7263

C—H

a

1 .0783 MW

C—H

b

1 .0796

C—H

c

1 .0796

∠CCCl

122 .75

∠CCH

a

123 .91

∠CCH

b

119 .28

∠CCH

c

121 .77

Vinyl fluoride

See Vinyl chloride

C—C

1 .3210

C—F

1 .3428

C—H

a

1 .0796 MW

C—H

b

1 .0774

C—H

c

1 .0789

∠CCF

121 .70

∠CCH

a

125 .95

∠CCH

b

118 .97

∠CCH

c

121 .34

Vinyl iodide

See Vinyl chloride

C—C

1 .3276

C—I

2 .0830

C—H

a

1 .0787 MW

C—H

b

1 .0823

C—H

c

1 .0799

∠CCI

122 .97

∠CCH

a

123 .54

∠CCH

b

119 .36

∠CCH

c

122 .30

Zinc cyanide

ZnC≡N (linear)

Zn—C

1 .955

C—N

1 .146

MW

structure of Free molecules in the gas phase

9-47

6679X_S09.indb 47

4/11/08 3:46:38 PM


Wyszukiwarka

Podobne podstrony:
test 09 02 07, studia, II semestr, Psychologia rozwojowa
Kody wybranych ofert od 2013 09 02
09 02 2015
Konspekt nr 3 09 02
09 02 09
pg 2010 09 02 14
AiR 11 12 wyklad 09 02 12 2011 Nieznany (2)
pp 09 02 06
BSI e 09.02.2011
ODL I sem termin3 09 02 23
09 16 89
pg 2010 09 02 14
2011 09 02 OZPN Praca Pisemna
Szczęśliwa Dwunastka Disco Polo (09 02 2011)
Szczęśliwa Siódemka Disco Polo Nowości (09 02 2010)
09 1996 89
12 02 89

więcej podobnych podstron