Katedra Ekonometrii UŁ
Zestaw nr 3: Granica i pochodna funkcji
Zadanie 1. Oblicz granice funkcji:
(1)
lim
x→∞
2x
2
+ 1
x
2
+ 2x − 1
(2)
lim
x→∞
√
x
2
+ 3
7x − 9
(3)
lim
x→∞
√
x+2+
√
x−5
x
(4)
lim
x→∞
√
x + 2 −
√
x − 5
(5)
lim
x→−∞
√
x
2
− 3 −
√
2x
2
+ 2
(6)
lim
x→−∞
2x+5
2x
7x+2
(7)
lim
x→∞
x−3
x
7x+2
(8)
lim
x→−∞
1+e
x
2x−6
(9)
lim
x→∞
2−e
−x
x
2
+6
(10)
lim
x→−∞
e
1+x
2x−6
(11)
lim
x→∞
xe
1
x
(12)
lim
x→−∞
e
1
x
ln x
2
(13)
lim
x→−∞
7x
3
+2x
2
−7
x
2
+1
(14)
lim
x→∞
4x
2
−5x
2x
4
−1
(15)
lim
x→−∞
sin(x
2
+3x)
3x
10
+13
(16)
lim
x→∞
x
√
x
2
+ x
(17)
lim
x→∞
x
√
2
x
+ 3
x
(18)
lim
x→∞
(
x
√
4 − ln(1 +
1
x
))
Zadanie 2. Oblicz granice funkcji:
(1)
lim
x→0+
4
ln(x+1)
(2)
lim
x→0
−
−2
ln(x+1)
(3)
lim
x→0
x
2
+2x
2x
2
+x
(4)
lim
x→1
x
2
−3x+2
x−1
(5)
lim
x→2
+
x
2
+4
x−2
(6)
lim
x→2
x
2
−4
x−2
(7)
lim
x→−1
+
ln
1
x+1
(8)
lim
x→1
−
ln
−5
x
2
−1
(9)
lim
x→3
+
e
1+x
x2 −4x+3
(10)
lim
x→3
−
e
1+x
x2 −4x+3
(11)
lim
x→1
+
1
(x−1)
2
(12)
lim
x→1
−
1
x−1
(13)
lim
x→∞
e
√
x+1
e
√
x
(14)
lim
x→1
1
√
x−1
(15)
lim
x→−∞
7x
3
+2x
2
−7
x
2
+1
Zadanie 3. Oblicz granice funkcji wykorzystując regułę de l’ Hospitala :
(1)
lim
x→0
4x
sin 3x
(2)
lim
x→0
−
e
1
x
ln(x+1)
(3)
lim
x→1
tg(x−1)
4x−4
(4)
lim
x→2
x
5
−32
x−2
(5)
lim
x→0
+
xe
1
x
(6)
lim
x→0
e
x
−e
−x
sin x
(7)
lim
x→∞
2x
2
−5
e
x
(8)
lim
x→1
2−2x
ln x
(9)
lim
x→0
+
x
2
ln x
(10)
lim
x→0
1−cos
2
x
sin x
(11)
lim
x→∞
ln x
x
2
+1
(12)
lim
x→−∞
e
−x
x
3
+1
Zadanie 4. Oblicz pochodne funkcji:
(1)
f (x) = 2x
3
+ 4x
2
− 5x + 4
(2)
f (x) =
7
4
√
x+3
(3)
f (x) = x
2
e
x
(4)
f (x) =
2x − 1
√
2
(5)
f (x) =
x
2
− 1
√
x
(6)
f (x) = 4 cos(3x) − 2 sin
2
x
(7)
f (x) =
e
3x
x
2
+4
(8)
f (x) =
4x
5+2x
(9)
f (x) =
4
x
3
−
3
x
2
+
5
x
(10)
f (x) = e
7+3 ln x
(11)
f (x) = sin 4x
2
+ 11
(12)
f (x) = e
2x cos x
(13)
f (x) =
q
1−2x
1−x
(14)
f (x) = ln
5
x−2
(15)
f (x) = ln (sin 3x)
(16)
f (x) = x
3
ln(5x)
(17)
f (x) = ln(x
2
− 1)
(18)
f (x) = ln
e
x
sin x
(19)
f (x) = x
3
ln
2
(x)
(20)
f (x) = e
x
ln
2
(x)
(21)
f (x) = sin
2
x + cos
2
x
1
Katedra Ekonometrii UŁ
Odpowiedzi
Zadanie 1.
(1)
2
(2)
1
7
(3)
0
(4)
0
(5)
−∞
(6)
e
35
2
(7)
e
−21
(8)
0
(9)
0
(10)
e
1
2
(11)
∞
(12)
∞
(13)
−∞
(14)
0
(15)
0
(10)
1
(17)
3
(18)
1
Zadanie 2.
(1)
∞
(2)
∞
(3)
2
(4)
−1
(5)
∞
(6)
4
(7)
∞
(8)
∞
(9)
∞
(10)
0
(11) ∞
(12) −∞
(13) 1
(14) nie istnieje
(15) −∞
Zadanie 3.
(1)
4
3
(2)
0
(3)
1
4
(4)
80
(5)
∞
(6)
2
(7)
0
(8)
2
(9)
0
(10)
0
(11)
0
(12)
−∞
Zadanie 4.
(1)
f
0
(x) = 8x + 6x
2
− 5
(2)
f
0
(x) = −
7
4
x
0
(x+3)
4
√
x+3
(3)
f
0
(x) = 2xe
x
+ x
2
e
x
(4)
f
0
(x) =
√
2
(5)
f
0
(x) = 2
√
x −
1
2x
3
2
x
2
− 1
(6)
f
0
(x) = −4 cos x sin x − 12 sin 3x
(7)
f
0
(x) =
(
3x
2
−2x+12
)
e
3x
(x
2
+4)
2
(8)
f
0
(x) = 20 (2x + 5)
−2
(9)
f
0
(x) =
6
x
3
−
5
x
2
−
12
x
4
(10)
f
0
(x) =
3
x
e
3 ln x+7
= 3e
7
x
2
(11)
f
0
(x) = 8x cos 4x
2
+ 11
(12)
f
0
(x) = e
2x cos x
(2 cos x − 2x sin x)
(13)
f (x) = −
1
2
1
(x−1)
2
√
1
1−x
(1−2x)
(14)
f
0
(x) = −
5
(x−2)
2
1
5
x −
2
5
(15)
f (x) = 3
cos 3x
sin 3x
(16)
f
0
(x) = x
2
+ 3x
2
ln 5x
(17)
f
0
(x) = 2
x
x
2
−1
(18)
f
0
(x) = 1 −
cos x
sin x
(20)
f
0
(x) = 2x
2
ln x + 3x
2
ln
2
x
(20)
f
0
(x) = (ln
2
x)e
x
+
2
x
(ln x) e
x
(21)
f
0
(x) = 0
2