1
Indukcja elektromagnetyczna
– poziom podstawowy
KLUCZ ODPOWIEDZI
Zadanie 1. (4 pkt)
Źródło: CKE 2005 (PP), zad. 22.
Lub:
er
v
r
v
v
v v v
v
v
v
v
v
Zadanie 2. (3 pkt)
Źródło: CKE 11.2006 (PP), zad. 22.
Próbny egzamin maturalny z fizyki i astronomii
Poziom podstawowy
3
Zapisanie zaleĪnoĞci
2
2
v
m
mgh
.
1
18.1
Obliczenie zmiany energii
ǻE
p
= 9·10
-3
J.
Dopuszcza siĊ rozwiązanie z zastosowaniem równaĔ ruchu.
1
18
18.2
Podanie dwóch przyczyn strat energii np. wystĊpowanie siá
oporu podczas ruchu, strata energii przy czĊĞciowo
niesprĊĪystym odbiciu od podáoĪa.
Za podanie jednej przyczyny – 1pkt.
2
4
Zapisanie zaleĪnoĞci
qvB
r
mv
2
i podstawienie
fr
r
v
S
Z
2
.
1
Otrzymanie zaleĪnoĞci
m
qB
f
S
2
.
1
19
Zapisanie prawidáowego wniosku –
czĊstotliwoĞü obiegu
cząstki nie zaleĪy od wartoĞci jej prĊdkoĞci, poniewaĪ
q, B,
oraz
m są wielkoĞciami staáymi.
1
3
Prawidáowe zinterpretowanie informacji na rysunku
i wyznaczenie róĪnicy dróg przebytych przez oba promienie
'
x = 0,0000012 m (lub 1,2 Pm).
1
20
ZauwaĪenie, Īe dla fali o dáugoĞci
O
= 0,4 Pm róĪnica dróg
wynosi 3
O
, zatem w punkcie
P – wystąpi wzmocnienie
Ğwiatáa.
1
2
21.1 Podanie minimalnej energii jonizacji E = 13,6 eV.
Za podanie wartoĞci (– 13,6 eV) nie przyznajemy punktu.
1
Skorzystanie z warunku
2
13,6
n
eV
E
n
.
1
21
21.2
Podanie minimalnej energii wzbudzenia
E
min
= 10,2 eV.
Za podanie wartoĞci (– 10,2 eV) nie przyznajemy punktu.
1
3
Skorzystanie z zaleĪnoĞci
2
m
e B
r
v
v i doprowadzenie jej do
postaci
m
eB
r
v
.
1
Skorzystanie z zaleĪnoĞci
O
=
mv
h
p
h
i uzyskanie związku
h
B
r e
O
.
1
22
Obliczenie wartoĞci wektora indukcji
B § 2·10
–3
T.
1
3
Stwierdzenie, Īe cząstki alfa są bardzo maáo przenikliwe i nie
wnikają do wnĊtrza organizmu.
Dopuszcza siĊ stwierdzenie, ze cząstki alfa mają maáy zasiĊg.
1
23
Stwierdzenie, Īe promieniowanie gamma jest bardzo
przenikliwe i wnika do wnĊtrza organizmu.
Dopuszcza siĊ stwierdzenie, ze cząstki gamma mają duĪy zasiĊg.
1
2
Skoro przy tej samej temperaturze gwiazda 2 wysyáa 10
6
razy
wiĊcej energii niĪ SáoĔce to „powierzchnia” gwiazdy 2
musi
byü teĪ 10
6
razy wiĊksza.
1
24.1
PoniewaĪ powierzchnia kuli to
S = 4SR
2
to promieĔ gwiazdy
3 musi byü 1000 = 10
3
razy wiĊkszy od promienia SáoĔca.
1
PoáoĪenie gwiazdy 3 na diagramie H – R pozwala wyciągnąü
wniosek, Īe jej temperatura jest taka sama jak dla SáoĔca.
1
24
24.2 PoáoĪenie gwiazdy 3 na diagramie H – R pozwala wyciągnąü
wniosek, Īe jej promieĔ jest mniejszy od promienia SáoĔca.
1
4
Próbny egzamin maturalny z fizyki i astronomii
Poziom podstawowy
2
Zadania zamkniĊte (punktacja 0 – 1)
Zadanie
1
2
3
4
5
6
7
8
9
10
OdpowiedĨ
A
B
B
A
C
A
B
D
B
A
Nr.
zadania
Punktowane elementy odpowiedzi
Liczba
punktów Razem
11.1
Wpisanie prawidáowych
okreĞleĔ pod rysunkami.
1
ZauwaĪenie, Īe droga jest równa poáowie dáugoĞci okrĊgu
1
11
11.2 Obliczenie drogi | 6,28m
s
.
1
3
Ustalenie przebytej drogi (10 m)
np. na podstawie wykresu.
1
12
Obliczenie wartoĞci prĊdkoĞci Ğredniej
m
= 2,5
s
sr
v
.
1
2
Ustalenie wartoĞci siáy napĊdowej F
nap
= 2500 N.
1
Ustalenie
wartoĞci siáy wypadkowej po ustaniu wiatru F
wyp
= 500 N.
1
13
Obliczenie wartoĞci przyspieszenia
2
m
= 0,5
s
a
.
1
3
Zastosowanie równaĔ opisujących drogĊ i prĊdkoĞü w ruchu
jednostajnie przyspieszonym i przeksztaácenie ich do postaci
umoĪliwiającej obliczenie przyspieszenia (
2
2
a
s
v
).
1
14
Obliczenie wartoĞci przyspieszenia a
= 1,2 m/s
2
.
1
2
15.1 Zaznaczenie prawidáowej odpowiedzi –
tylko elektrony.
1
15 15.2
Udzielenie prawidáowej odpowiedzi –
przewodnictwo
elektryczne metali pogarsza siĊ (zmniejsza siĊ) wraz
ze wzrostem temperatury.
Dopuszcza siĊ uzasadnienie opisujące zaleĪnoĞü oporu
przewodnika (metali) od temperatury.
1
2
16.1
Udzielenie prawidáowej odpowiedzi
– jednoczesna zmiana ciĞnienia, objĊtoĞci i temperatury
zachodzi w przemianie 1 – 2.
1
16
16.2 Udzielenie prawidáowej odpowiedzi – temperatura gazu jest
najwyĪsza w punkcie 2.
1
2
WyraĪenie wartoĞci siáy dziaáającej na gwóĨdĨ
p
F
t
'
'
.
1
17.1
Obliczenie wartoĞci siáy F
= 2,5 kN.
1
2
ZauwaĪenie, Īe
2
2
m
mgh
v
1
Zapisanie wyraĪenia
2
2
h
g
v
.
1
17
17.2
Obliczenie wysokoĞci h
= 5 m.
1
3
tor
przemieszenie
A
B
A
B
2
Zadanie 4. (1 pkt)
Źródło: CKE 2010 (PP), zad. 8.
Egzamin maturalny z fizyki i astronomii
Klucz punktowania odpowiedzi – poziom podstawowy
3
Zadanie 8.
WiadomoĞci i rozumienie
Opisywanie wpáywu pola magnetycznego zwojnicy na
ruch prostoliniowego przewodnika z prądem
umieszczonego w jej Ğrodku
0–1
Poprawna odpowiedĨ:
A. 0 N.
Zadanie 9.
WiadomoĞci i rozumienie
Analizowanie zjawiska zaáamania Ğwiatáa przy
przechodzeniu przez dwie granice miĊdzy trzema
oĞrodkami o róĪnych wspóáczynnikach zaáamania.
0–1
Poprawna odpowiedĨ:
C. n
1
< n
3
< n
2
.
Zadanie 10.
WiadomoĞci i rozumienie Przyporządkowanie gwiazdy do typu widmowego na
postawie jej temperatury
0–1
Poprawna odpowiedĨ:
D. czerwone olbrzymy.
Zadanie 11.1.
WiadomoĞci i rozumienie
Zapisanie warunku, który musi byü speániony, aby
moĪna byáo ruch ciaáa w ziemskim polu
grawitacyjnym uznaü jako swobodne spadanie
0–1
1 p. – poprawne uzupeánienie zdania, np.:
... gdy nie wystĊpują siáy oporu.
lub
... gdy jedyną siáą dziaáającą na ciaáo jest siáa grawitacji.
Zadanie 11.2.
Korzystanie z informacji
Narysowanie wykresu zaleĪnoĞci wysokoĞci, na której
znajduje siĊ ciaáo od czasu trwania ruchu
0–4
1 p. – obliczenie wysokoĞci, na której znajduje siĊ kamieĔ (np.: 18,75 m; 15 m; 8,75 m; 0 m)
lub przebytej drogi przez kamieĔ (np.: 1,25 m; 5 m; 11,25 m; 20 m)
1 p. – opisanie i wyskalowanie osi (z uwzglĊdnieniem wysokoĞci)
1 p. – naniesienie punktów o odpowiednich wspóárzĊdnych na wykresie
(np.: 0 s, 20 m; 0,5 s, 18,75 m; 1 s, 15 m; 1,5 s, 8,75 m; 2 s, 0 m)
1 p. – narysowanie krzywej
Fizyka i astronomia – poziom podstawowy
Klucz punktowania odpowiedzi
6
Zadanie 12.3
Korzystanie z informacji
Wykazanie, Īe w ukáadzie SI energia kinetyczna
protonu wyraĪona jest w dĪulach.
0–2
1 pkt – zapisanie, Īe
> @
kg
T
m
C
E
k
2
2
2
1 pkt – wykonanie przeksztaáceĔ i wykazanie, Īe [E
k
] =
2
2
s
m
kg
= J
Zadanie 13.1
Korzystanie z informacji
Obliczenie wspóáczynnika sprĊĪystoĞci sprĊĪyny
wykorzystując wykres zaleĪnoĞci siáy wprawiającej
ciaáo w drgania od jego przemieszczenia.
0–2
1 pkt – zapisanie zaleĪnoĞci
x
F
k i podstawienie wartoĞci liczbowych odczytanych
z wykresu
1 pkt – obliczenie wspóáczynnika sprĊĪystoĞci sprĊĪyny k = 80 N/m
Zadanie 13.2
Korzystanie z informacji
Wykazanie, Īe maksymalna wartoĞü przyspieszenia
drgającej kulki jest równa podanej wartoĞci.
0–1
1 pkt – zapisanie zaleĪnoĞci
m
F
a i obliczenie maksymalnej wartoĞci przyspieszenia
a
max
= 4 m/s
2
Zadanie 14.1
Tworzenie informacji
Ustalenie, jak zmieniáa siĊ gĊstoĞü gazu
w przedstawionej przemianie gazowej.
Uzasadnienie odpowiedzi, podając odpowiednie
zaleĪnoĞci.
0–2
1 pkt – zapisanie stwierdzenia:
gĊstoĞü gazu w przemianie rosáa
1 pkt – zapisanie uzasadnienia np.: wzrost ciĞnienia gazu byá trzykrotny, a temperatury
dwukrotny zatem objĊtoĞü
malaáa
lub
zapisanie
V
m
U
gdzie
p
T
R
n
V
i odpowiedni komentarz o zmianie objĊtoĞci
Zadanie 14.2
Korzystanie z informacji
Ustalenie, który z wymienionych w tabeli gazów
poddano opisanej przemianie gazowej.
0–3
1 pkt – zapisanie równania
T
R
n
V
p
i podstawienie
P
m
n
Zadanie 3.3 (2 pkt)
Zadanie 3. (5 pkt)
Źródło: CKE 2009 (PP), zad. 12.
Fizyka i astronomia – poziom podstawowy
Klucz punktowania odpowiedzi
5
gr
F
G
b
F
G
r
F
G
Zadanie 11.2
WiadomoĞci i rozumienie Obliczenie wartoĞci siáy nacisku ciaáa na podáogĊ
windy w ruchu jednostajnie przyspieszonym do góry.
0–3
1 pkt – uwzglĊdnienie, Īe F
N
= F
b
+ F
g
= m·a + m·g
1 pkt – wyznaczenie wartoĞci przyspieszenia (a = 1 m/s
2
)
1 pkt – obliczenie wartoĞci siáy nacisku
F
N
= 660 N
Zadanie 11.3
Korzystanie z informacji
Narysowanie i zapisanie nazwy siá dziaáających
na ciaáo w windzie (ukáad nieinercjalny) podczas
ruszania windy do góry.
0–2
1 pkt – narysowanie trzech siá i nazwanie ich
gr
F
G
– siáa grawitacji (siáa ciĊĪkoĞci, ciĊĪar)
b
F
G
– siáa bezwáadnoĞci
r
F
G
– siáa reakcji
1 pkt – zachowanie odpowiednich relacji miĊdzy wektorami
0
b
gr
r
F
F
F
G
G
G
Zadanie 12.1
Korzystanie z informacji
Narysowanie siáy dziaáającej na cząstkĊ obdarzoną
áadunkiem elektrycznym poruszającą siĊ w
jednorodnym polu magnetycznym.
0–1
1 pkt – poprawne zaznaczenie siáy: wektor siáy skierowany poziomo w prawo
Zadanie 12.2
Tworzenie informacji
Wyprowadzenie wzoru okreĞlającego energiĊ
kinetyczną cząstki obdarzonej áadunkiem
elektrycznym poruszającej siĊ w jednorodnym polu
magnetycznym.
0–2
1 pkt – skorzystanie z zaleĪnoĞci
d
L
F
F lub
r
v
m
B
v
q
2
1 pkt – uzyskanie zaleĪnoĞci
m
r
B
q
E
k
2
2
2
2
Zadanie 3.1 (1 pkt)
Zadanie 3.2 (2 pkt)