02 Newton Rhapson method

background image

1

2 Steady State Calculation by the Using of Newton Iteration Method

Before applying this method to the steady state calculation, in next will be shown

principle of this method for solution of the common system of non-linear algebraic

equations.

At first, let’s assume one-dimensional non-linear equation .

0

)

(

f

x

Finding of the solution of this equation:

1) choosing of the initial approximation

2) determination of the tangential equation

in this point

(from definition of the function derivation)

:

3) calculation of the first approximation

(0)

x

 

    

)

0

(

)

0

(

'

)

0

(

f

f

f

x

x

x

x

x

(1)

x

    

)

0

(

)

1

(

)

0

(

'

)

0

(

f

f

0

x

x

x

x

 

 

)

0

(

'

)

0

(

)

0

(

)

1

(

f

f

x

x

x

x

4) verification of the computing accuracy

)

0

(

)

1

(

x

x

root of the equation

tangent

line

5) if accuracy condition isn’t fulfilled, the computation

is repeated from event 3) according to:

 

 

)

(

'

)

(

)

(

)

1

(

f

f

k

k

k

k

x

x

x

x

background image

2

Definition of the function derivation:

 

x

y

x

y

x

0

x

'

lim

d

d

f

x

x

y

y

d

d

Common expression for Newton iteration method:

background image

3

A system of non-linear equations can by written as:

0

x

f

y

)

(

x

- vector of unknowns (with dimension

n

)

-

n

dimensional vector function of

x

)

(x

f

y

Common expression for Newton iteration method in this case:

 

x

J

x

x

x

f

y

n

n

n

n

n

n

n

n

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

y

y

y

2

1

2

1

2

2

2

1

2

1

2

1

1

1

2

1

)

(

f

)

(

f

)

(

f

)

(

f

)

(

f

)

(

f

)

(

f

)

(

f

)

(

f

This equation can be decomposed as:

J

- Jacobian matrix

background image

4

Steady State Calculation by the Using of Newton Iteration Method for Given

(

P

,

Q

) nodes

Let's assume, the network containing

n

nodes is given. In each node, except the

balance one, is given the power:

i

i

i

i

i

I

U

Q

P

S

*

.

j

With regard to MNV we can write:

n

j

j

ij

i

i

i

i

U

Y

U

Q

P

I

1

*

.

j

n

i

,

,

3

,

2

n

i

,

,

3

,

2

n

j

j

ij

i

i

i

U

Y

U

Q

P

1

*

.

j

Voltage and admittance phasors can be written by the component or polar form.

When applying the polar form let’s assume:

i

i

i

U

U

i

i

i

U

U

*

j

i

j

i

ij

Y

Y

n

i

,

,

3

,

2

background image

5

We divide the right hand-side of this equation into the real and imaginary parts:

j

i

j

i

j

i

j

n

j

i

i

Y

U

U

P

cos

1

j

i

j

i

j

i

j

n

j

i

i

Y

U

U

Q

sin

1

n

i

,

,

3

,

2

n

i

,

,

3

,

2

We obtain 2.(

n

-1) non - linear equations with (

n

-1) unknown voltages and their (

n

-1)

angles.

Notation: We know absolute value of voltage and its angle (usually set as zero) in balance node.

Then

n

j

ij

j

i

n

j

j

ij

i

n

j

j

ij

i

i

i

j

i

j

i

j

j

i

i

Y

U

U

U

Y

U

U

Y

U

Q

P

1

j

-

1

j

j

j

-

1

*

e

e

e

e

.

j

background image

6

 

 

 

 

U

Q

U

Q

P

U

P

Q

P

Expression of Newton iteration method for calculation of this equation system:

Short expression:

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

U

U

U

Q

Q

Q

U

Q

U

Q

U

Q

Q

Q

Q

U

Q

U

Q

U

Q

Q

Q

Q

U

Q

U

Q

U

Q

P

P

P

U

P

U

P

U

P

P

P

P

U

P

U

P

U

P

P

P

P

U

P

U

P

U

P

Q

Q

Q

P

P

P

3

2

3

2

3

2

3

2

3

3

3

2

3

3

3

3

2

3

2

3

2

2

2

2

3

2

2

2

3

2

3

2

3

3

3

2

3

3

3

3

2

3

2

3

2

2

2

2

3

2

2

2

3

2

3

2

background image

7

We obtain individual elements of Jacobian matrix by differentiation of previous
equations with respect to appropriate variables as follows:

U

P

)

cos(

cos

.

.

2

,

1

j

i

j

i

j

i

n

i

j

j

j

i

i

i

i

i

i

i

Y

U

Y

U

U

P

)

cos(

j

i

j

i

j

i

i

j

i

Y

U

U

P

P

)

sin(

.

.

.

,

1

j

i

j

i

j

i

j

n

i

j

j

i

i

i

Y

U

U

P

)

sin(

.

.

.

j

i

j

i

j

i

j

i

j

i

Y

U

U

P

U

Q

Q

)

sin(

sin

.

.

2

,

1

j

i

j

i

j

i

n

i

j

j

j

i

i

i

i

i

i

i

Y

U

Y

U

U

Q

)

sin(

j

i

j

i

j

i

i

j

i

Y

U

U

Q

)

cos(

.

.

.

,

1

j

i

j

i

j

i

j

n

i

j

j

i

i

i

Y

U

U

Q

)

cos(

.

.

.

j

i

j

i

j

i

j

i

j

i

Y

U

U

Q

background image

8

The solution process is evident from the following algorithm:

- network configuration
- parameters of the network elements

)

0

(

)

0

(

2

...,

,

n

U

U

giv

giv

P

i giv

– given

power in i-th node

Calculation of P, Q distribution
Determination of

P in network

background image

9

Steady State Calculation by the Using of Newton Iteration Method for Given

(

P

,

Q

) and (

P

,

U

) Nodes

It is required to keep voltage on the specified value in chosen nodes (

P

,

U

) of the

power system. We could guarantee this condition if we have adequate reactive power

in the power system (let’s assume, that a compensator is available in these nodes).

We can evaluate the magnitude of the compensation reactive power

Q

in individual

nodes by steady state solutions, e. g. with the aid of Newton method.

Let’s see the solution of the given problem in the power system, which contains

n

nodes.

Let’s assume, that in power systems is:

• the 1

st

node - the balance node, i.e.

U

1

and

1

(usually

1

= 0) is given,

• 2

nd

till

m -

th node is of type

P

,

Q

,

• (

m

+1) till

n

– th node is regulating one, i.e. of type

P

,

U

.

We know:

• (

n

– 1) equations with given active power

P

2

, ...,

P

n

and

• (

m

– 1) equations with given reactive power

Q

2

, ...,

Q

m

,

hence we calculate:

• the absolute values of voltage in nodes 2 till

m

, (

U

2

, ...,

U

m

) and

• angles in all nodes except the balance node (

2

, ...,

n

).

background image

10

With application of Newton method we can write:

n

m

m

m

n

n

m

n

n

m

m

m

m

n

n

m

m

m

m

n

n

m

m

m

n

m

m

m

n

m

m

m

m

m

m

m

m

m

n

m

m

m

n

m

m

m

m

m

m

m

m

m

n

m

m

m

U

U

P

P

P

P

P

P

P

P

U

P

U

P

U

P

U

P

Q

Q

Q

Q

Q

Q

Q

Q

U

Q

U

Q

U

Q

U

Q

P

P

P

P

P

P

P

P

U

P

U

P

U

P

U

P

P

P

Q

Q

P

P

1

2

2

1

1

1

1

2

1

2

1

2

1

2

1

1

2

1

2

2

2

2

2

2

2

2

2

1

2

1

2

2

2

2

2

2

2

2

2

1

2

2

For short we can write this relation as:

 

 

 

 

 

 







U

P

P

U

P

Q

Q

U

Q

P

P

U

P

P

Q

P

background image

11

By iterative process solution with desired accuracy we obtain values of:

• voltage

U

2

, ...,

U

m

and

• angles

2

, ...,

n

.

Then the required compensation reactive power for the keeping of specified voltage in

i -

th node is:

j

i

j

i

j

i

j

n

j

i

i

Y

U

U

Q

sin

1

n

m

i

,

,

1 

If the calculated reactive power in some regulating node oversteps the allowable

value (i.e. the installed power output of compensation devices), then the type of this

node is changed from type (

P

,

U

) to type (

P

,

Q

), where

Q

is appropriate reactive

power limit. The specified voltage is cancelled and we repeat the calculation.


Wyszukiwarka

Podobne podstrony:
02 References and Methods
02 References and Methods
ZMPST 02 Optimization Methods
FIDE Trainers Surveys 2015 02 26 Adrian Mikhalchishin Capablanca s method of realization
Wyk 02 Pneumatyczne elementy
02 OperowanieDanymiid 3913 ppt
02 Boża radość Ne MSZA ŚWIĘTAid 3583 ppt
OC 02
PD W1 Wprowadzenie do PD(2010 10 02) 1 1
02 Pojęcie i podziały prawaid 3482 ppt
WYKŁAD 02 SterowCyfrowe
02 filtracja
02 poniedziałek
21 02 2014 Wykład 1 Sala

więcej podobnych podstron