background image

Steerprop

TECHNICAL INFORMATION

DESIGNERS' CHECKLIST No. 2

Offshore Support Vessels

background image

2/2001 

April 2001 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels 

 
TABLE OF CONTENTS 

 

HULL FORM 

1. 

Stern Lines .................................................................................................. 1 

2. 

Hard Chine .................................................................................................. 2 

3. 

Round Bilge................................................................................................. 2 

4. 

Transom ...................................................................................................... 2 

SKEG 

5. 

Skeg Size .................................................................................................... 3 

WEIGHT, HYDROSTATIC, STABILITY 

6. 

Weight......................................................................................................... 4 

7. 

Trim and Draft.............................................................................................. 4 

HULL STRENGTH 

8. 

Mounting Adapters....................................................................................... 4 

9. 

Navigation Mast........................................................................................... 5 

10. 

Shaft Bearing Support.................................................................................. 5 

11. 

Bulwark ....................................................................................................... 5 

12. 

Skeg............................................................................................................ 5 

PROPULSOR INSTALLATION 

13. 

Propulsor Installation Alternatives................................................................. 5 

14. 

Distance between the Propulsor Units .......................................................... 7 

15. 

Propulsor Tilting and Heeling........................................................................ 8 

INTERMEDIATE SHAFTS 

16. 

Shaft Arrangement....................................................................................... 9 

17. 

Shaft Angle................................................................................................ 12 

18. 

Cardan Joint Phasing................................................................................. 13 

CONTROL LAYOUT 

19. 

Control Layout ........................................................................................... 13 

PROPULSOR ROOM SPACE 

20. 

Propulsor Room Space .............................................................................. 14 

MAIN ENGINE

 

21. 

Main Engine Choice  .................................................................................. 14 

EXTERNAL CONNECTIONS

 

22. 

Electricity................................................................................................... 14 

23. 

Cabling...................................................................................................... 14 

24. 

External Tanks........................................................................................... 15 

25. 

Cooling...................................................................................................... 15

 

background image

2/2001 

April 2001

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels 

This “checklist” is compiled in order to enable designers with no or little experience in 

azimuth propulsion vessels to make significantly better preliminary designs and proposals 

for azimuth propulsion vessels. The list can also well serve the experienced designer as a 

checklist or reminder that important aspects  have been considered in the design. 

The list is based on a the experience of supporting naval architects, shipyards and owners 

with comments, hints and suggestions on how to improve their designs in order to optimise 

the available performance of vessels equipped with azimuth propulsion. When compiling 

the list we have also used direct input from naval architects on what is special on vessels 

with azimuth propulsion and what should be kept in mind when designing these kinds of 

vessels. 

The list is in no way exhaustive and does not include  every  important aspect of a good 

azimuth propulsor vessel design. It is more to be seen as a reminder to details often not 

known, forgotten or ignored. 

The advice and details in the list should not be taken as requirements, nor can a vessel be 

designed solely relying on the items in this list – the real work, and end result is still up to 

the naval architect designing the vessel, as is the full responsibility. Steerprop Ltd. cannot 

be held responsible for any possible negative influence on any design based on the 

proposals in this list. 

 

HULL FORM 

1. 

Stern Lines 

Offshore support vessels with azimuth propulsors should be designed with 
a “buttock flow” or  -  also called,  “pram-type”  – stern, where the water 
inflow to the propellers  is  mainly along the buttocks, not from the sides. 
The angle between the baseline and the buttocks in the stern should be 

kept as small as possible. A good rule-of-thumb for maximum 
recommended angle is 13º + 1º for each meter of immersion (hull draft). 
Thus, the angle should normally be kept less than 17º …18º (fig. 1). 

 

 

Fig.1. 

Profile of a buttock flow stern. Maximum recommended angle a is 13º + 1º for each meter 

of draft 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

 

Larger angles will cause the water flow to separate and cause turbulence 
in front of the propeller, as well as water inflow from the sides – both of 
which are prone to decrease propeller performance drastically. 

The stern profile is often S-formed, but there is neither need nor benefit in 

this neither in straightening the buttocks to be almost horizontal in way of 
the propulsors. 

The stern should, however, have a slight V-angle all the way to the 

transom. There is no need for flattening the area in way of the propulsors. 
A  V-angle – even a slight one – will reduce the risk for stern slamming in 
waves. 

The propulsors may protrude below base line, as on some designs they do. 

This should also be considered in the skeg dimensions. 

 

2. 

Hard Chine 

Hard  chine  designs are possible, but only double chine type is 
recommended. Alignment of the chine  needs  special  attention, as flow 
separation may occur where flow-lines cross the chine. This increases the 

resistance and deteriorates the operating conditions for the propeller, 
reducing the performance of the vessel correspondingly. 

The double chine should extend all the way to the transom. 

 

3. 

Round Bilge 

From the hydrodynamic point of view the best bilge form is a round bilge, 

with a radius growing towards the stern. 

 

4. 

Transom 

The transom should  be designed with as little immersion as possible, as 
the water “trapped” behind the transom causes a large increase in 
resistance. 

An immersed transom may be “cut off” at  approximately 45º to the 
waterline in way of the waterline in order to improve astern performance, 
fig. 2. A cut off will have a substantial influence on both astern speed and 

astern manoeuvrability. 

The propulsor should not be installed too close to the transom in order to 
avoid ventilation of the propeller while going astern or braking. 

 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

 

 

 

Fig. 2.   A transom “cut-off”, as shown above, will improve the astern performance substantially 

 

SKEG 

5. 

Skeg Size 

The skeg can normally be very small without losing the directional 
stability. A short skeg will make the vessel more manoeuvrable and will 
improve astern course keeping and performance. In no case should the 

skeg run all the way to the propulsors, when turned for astern sailing, fig. 
3.  A too long skeg will also make sidestepping difficult as the water flow 
from the propulsor is re-directed by skeg. 

 

 

 

Fig. 3.   Maximum skeg length shown in the left figure. The right figure shows a too long skeg. 

 

The draft of the skeg should preferably be large enough to go below the 
azimuth propulsors by 100…300mm. However, dry-docking procedures 

should be taken into account, especially  when  the propulsion units are 
protruding below the bottom of the hull. 

 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

 

WEIGHT, HYDROSTATICS, STABILITY 

6. 

Weight 

The weight of the azimuth propulsors may come as a surprise and often it 

will be difficult to get a proper balance, if not accounted for in the basic 
design. The units are way back in an area with little or no  hull volume. 
Hence, the centre of gravity for the rest of the vessel needs to be kept 
more forward than on similar vessels with conventional propulsion. 

 

7. 

Trim and Draft 

It should be possible to alter at least  the trim  in order to improve the 

performance and to prevent ventilation of the propellers in waves or when 
braking or when running astern. Supply vessels may be required to have 
ample ballast tanks in order to compensate for cargo and to improve the 

performance of the empty vessel. 

 

HULL STRENGTH 

8. 

Mounting Adapters  

Minimum recommended mounting adapter height is 300 …500 mm at the 
lowest point, depending on size and form, fig. 4. Minimum height is 

determined by strength requirements and installation procedure. 

min. 300 mm

Mounting adapter

 

Fig. 4. 

A drawing showing the mounting adapter and its minimum height. 

The hull  in way of the azimuth propulsors may  require extra strength  to 

accomplish the correct sequence of  damage, i.e. the propulsor should 
break before tearing off the bottom. 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

 

9. 

Navigation Mast 

The mast needs to be stiff enough and possibly supported to reduce 
excessive vibrations, especially in fast manoeuvres at high speed. 

 

10. 

Shaft Bearing Supports 

The shaft bearing supports need to be stiff and strong enough to take the 

load of the rotating shaft. 

 

11. 

Bulwark 

The bulwark should be inclined inwards to prevent it from touching when 
close to other vessels. Ideally the bulwark should not be as far to the sides 
as possible, but some tens of centimetres inwards to enable easy stepping 

onboard without having to jump the bulwark first. 

The bulwark around aft deck need to be strong enough to take the whole 
weight of the tow wire without shearing, if the vessel is equipped with an 
aft winch and intended also for towing. 

 

12. 

Skeg 

The skeg need to be supported inside the hull, not just welded to the 
bottom plate. A “soft” skeg may cause severe vibration throughout the 
vessel, not only to the skeg itself. The vessel is also supported by the skeg 
during dry-docking and it is the first part to hit the bottom in case of 

grounding, thus protecting the propeller nozzles. 

 

PROPULSOR INSTALLATION 

13. 

Propulsor Installation Alternatives  

The Steerprop propulsors may be  installed in several different 
configurations  and variations thereof.  Additional, customized installation 

configurations can also be arranged. The main installation modes are: 

 

• 

Weld-in installation 

• 

Small bolt-in mounting cone 

• 

Large mounting adapter for thru-hull mounting 

 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

 

Weld-in Installation 

The weld in installation is the strongest installation into the hull and the 
propulsor is an integrated part of the hull structure. The propulsor is 
usually installed in two parts – the upper part, that is welded into the hull, 

from above and the lower part from below the hull. 

 

 

Fig. 5. 

Weld-in installation: 1) the upper part is installed from above; 2) the upper part is welded at 

the hull bottom and at the top flange, the lower part is brought into place from below the 

hull; 3) the lower part is bolted to the upper part 

 

 

Small Bolt-in Mounting Cone 

When the propulsor is installed using the small mounting cone there is no 
need to compromise hull strength around the propulsors, as the needed 

openings in the hull can be kept to a minimum.  Mounting cone installation 
allows  the  propulsor to be installed in one piece from below or in two 
pieces, upper gearbox from above and lower gearbox from below. 

 

 

Fig. 6. 

Small bolt-in mounting cone installation – in one piece: 1) the propulsor is brought below 

the hull; 2) the propulsor is turned in way of the trunk and lifted into position; 3) the 

propulsor is bolted into the trunk and the clutch assembly is installed 

 
 
 
 
 
 
 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

 

 
 

 

Fig. 7. 

Small bolt-in mounting cone installation – in two parts: 1) the upper part is installed from 

above, the lower part is brought into place from below the hull; 2) the upper part is bolted 

into the hull; 3) the lower part is lifted into place and bolted to the upper part 

 

Large Mounting Adapter 

The use of a large mounting adapter allows the complete propulsor to be 
lifted onboard in one piece. Often it is possible to do so even with the 
vessel in water. This feature also enables the propulsor to be lifted off the 

vessel for repairs and maintenance without dry-docking the vessel. See 
fig. 8. 

 

 

Fig. 8. 

Large bolt-in mounting adapter installation: 1) the propulsor is lifted onboard; 2) the 

propulsor is bolted to the trunk flange; 3) the deck hatch is bolted or welded into place 

above the propulsor 

 
 

14. 

Distance between the Propulsor Units 

In order to improve the overall performance, especially the 
manoeuvrability of the vessel, the unit should be installed as far from each 

other as possible. Minimum recommended distance between the units is 
the unit turning diameter + 500 mm.  

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

 

It is also recommended that the distance from the vessel side to the unit 
centre is more than ½ unit turning diameter + 500 mm, in order to 
prevent the units from touching jetties or other vessels when heeling. 

min.

500 mm

min.

500 mm

 

 

Fig. 9. 

Minimum distance between the units as well as between the side and the units are 500 mm 

The beam  of the vessel  should, of course,  be designed to allow the 
required units to be installed accordingly. 

 

15. 

Propulsor Tilting and Heeling 

The propulsor units need not to be installed vertically, but can be both 
tilted (longitudinally) and heeled (laterally) in order to achieve some 

benefits. Typically the units are tilted, up to 3º …5º in order to decrease 
the cardan shaft angles on the intermediate shaft. To achieve same 
lifetime expectancy / maintenance interval for all the cardan bearings the 
prime mover should be tilted correspondingly. Note that some main engine 

manufacturers have strict maximum angles for engine tilt, thus also 
restricting the propulsor tilt angle. 

A tilt of 2º …3º is in any case recommended to improve the hydrodynamic 

efficiency of the installation. 

If the main engines need to be installed close to each other, the distance 
between the propulsors can be maximized (and performance improved) by 

a) using oblique intermediate shaft angles  – note maximum cardan shaft 
angles! – and/or b) by heeling the units outwards. Maximum heel angle is 
to be determined case by case. 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

 

tilt 3

o

         

heel 5

o

heel 5

o

 

 

Fig. 10.  The units can be installed either tilted or heeled, or both. A tilt of 2º …3º is recommended to 

optimise the water inflow to the propeller. 

 
 

INTERMEDIATE SHAFTS 

16. 

Shaft Arrangements 

The power train between the prime mover and the propulsor is by an 

intermediate shaft. Depending on application and installation there are 
several different possibilities for the intermediate shaft layout.  In the 
shortest case the shaft is only a tooth coupling and a flexible coupling 

between the engine flywheel and the propulsor input flange. 

In order to prevent the forces from the propulsor and the shafts to 
damage the prime mover a flexible coupling has  always  to be installed 
between the engine flywheel and the intermediate shaft package. 

Tooth Coupling and Flexible Coupling 

This is the shortest possible intermediate shaft installation, where the 
shaft is a mere tooth coupling connected to the propulsor flange at one 

end and to the flexible coupling on the prime mover flywheel. 

 

 

Fig. 11.  Using only a tooth coupling and a flexible coupling results in the shortest possible 

intermediate shaft line arrangement 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

10 

 

Stub Shaft 

The next shortest intermediate shaft is a short, so called stub shaft. The 
shaft should be equipped with a pair of bearings to take the gravity load of 
the shaft and thus the shortest possible length  is one that provides for 

space for the bearings. The stub shaft is usually fixed  by flanges to the 
propulsor input flange and the flexible coupling on the prime mover 
flywheel. 

 

 

Fig. 12.  The stub shaft arrangement is another very compact installation method. 

 

Centalink 

If a short shaft without bearings is preferred a possibility is to use a so-
called  flexible shaft, e.g.  Centalink, where the  shaft (normally of tube 
type) is integrated to torsionally stiff flexible elements at each end of the 
shaft. 

Carbon Fibre Shaft 

A novel solution for straight shaft installations is to use a large diameter 
hollow carbon fibre shaft, which requires no bearings. The use of a carbon 

fibre shaft is feasible in  vessels, where a  straight  steel  shaft otherwise 
would be used. The carbon fibre shaft will save  weight and installation 
work compared to a conventional shaft with bearings and bearing 

foundations. The carbon fibre shaft is using the same flexible elements as 
in the Centalink solution above. Maximum length of a single piece shaft is 
approx. 8 m. 

 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

11 

 

 

Fig. 13.  The “flexible” shaft line arrangement – with no bearings – enables a fast and easy 

installation of the intermediate shaft. 

 

Single Cardan Shaft 

If the engine is installed close to the same level as the propulsor and 
rather close to each other a single cardan shaft can be used as the 
intermediate shaft. In order not to damage the engine a stub shaft is 

required, at least for power ratings above, say 600 kW. The stub shaft 
requires a pair of bearings capable of taking axial forces and to take the 
shaft weight. Note that the cardan shaft cannot be used with very small 
angles; a minimum of 1º is normally required to ensure that the joint 

bearings are moving. 

 

 

Fig. 14.  Sometimes it is feasible to use the single cardan shaft solution. Also this installation will 

require a stub shaft and flexible coupling. 

 

 

 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

12 

 

Typical Intermediate Shaft 

The typical intermediate shaft arrangement on an offshore support vessel 
with direct diesel drive comprises cardan shafts and a rather long straight 
shaft. Also this arrangement will require a stub shaft at the prime mover 

end as well as a flexible coupling to save the prime mover from damage. 

 

 

 

Fig. 15.  The typical intermediate shaft comprise two cardan shafts with a long straight shaft in 

between. At the prime mover end a stub shaft and a flexible coupling will be required 

 
 

 

17. 

Shaft Angle  

The height difference between prime mover flywheel and azimuth 
propulsor input flange should be kept as small as possible. Maximum 
allowed height is dependent on distance between the prime mover and 

cardan shafts chosen. 

 

Maximum usable angle is approximately 7.5º per joint, due to cardan shaft 

rpm, bearing lifetime, and vibration. Use of the maximum angle has to be 
separately checked. In order to avoid later problems,  maximum 
recommended angle is 6 ...6.5º per joint. 

 

max. 15

o

 

Fig. 16   The angle of the intermediate shaft should be minimized - maximum recommended angle is 

usually 15º 

 
 

 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

13 

 

18. 

Cardan Joint Phasing. 

In order to improve the performance and lifetime of the cardans as well as 
to reduce the risk for vibration problems on the intermediate shaft, the 

cardan shaft joints at each end of the intermediate shaft should be in the 
same phase for an odd number of shaft bearings and in different phase for 
an even number of bearings. 

 

 

 

Fig. 17  Cardan shaft phasing. Above with same phase for intermediate shaft with odd number of 

bearings. Below with different phasing for intermediate shafts with even number of 

bearings. 

CONTROL LAYOUT 

 

19. 

Control Layout 

The azimuth propulsor controls should be positioned in a way to enable the 

helmsman to easily concentrate on the operations, not on how to handle 
his vessel. The optimum solution is to place the control cabinets on each 
side of the steering position. The distance between the cabinets should 

allow  a helmsman’s chair to fit between them, but the distance between 
the propulsor controls should be kept between 55 cm and 65 cm. 

55 ...65 cm

 

 

 

Fig. 18 A typical single steering position layout with a “walk-through” control layout. The distance 

between the azimuth propulsor controls should be 55-65 cm. 

 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

14 

 

 

PROPULSOR ROOM SPACE 

20. 

Propulsor Room Space 

There should be enough internal height in the propulsor room to allow for 
installation as well as maintenance of the units. Recommended is a 
minimum height of 200 …300 mm above the units. A separate bolted-on 

maintenance hatch can be installed above the unit if enough height is 
otherwise not available. The Steerprop Azimuth Propulsors are designed to 
be as short as possible, i.e. the internal height requirement is minimised 
and thus the units are suitable also for very low deck heights. 

 

MAIN ENGINE 

21. 

Main Engine Choice 

The propeller and main engine should be chosen together in order to 
ensure that there is enough of torque available even in conditions with 
negative water inflow to the propellers. If not, there is risk for engine 

overload and stalling in a critical phase of ship handling. 

 

EXTERNAL CONNECTIONS 

22. 

Electricity 

The Steerprop propulsors require an external feed of electricity for the 
control, for the display and emergency steering as well as for the alarms. 

The system is of 24 V DC type and the electricity is required to the control 
cabinets, normally situated in the engine room. 

The electricity demand is approx. 300 W for the primary steering, approx 
100 W for the emergency steering and display and approx. 50 W for the 

alarms. 

The electricity feed is required to be continuous with a battery backup. 

 

23. 

Cabling 

The controls will require three cables for each propulsor to be drawn 
between the wheelhouse  control stand and the engine room / propulsor 

room. There is one cable for the main control, one for the emergency 
control and display and on cable for the alarms. 

 

background image

2/2001 

April 2001 

 

DESIGNERS’ CHECKLIST Nº 2 

Offshore Support Vessels

 

 

15 

 

24. 

External Tanks 

The Steerprop propulsors require a shaft seal tank of approx. 20 litre 
capacity for each propulsor to be installed in the propulsor room. For units 

with hydraulic steering a hydraulic unit  - comprising required tanks 
(capacity 60 …100 litres), filters, valves and coolers – need to be installed 
close to each propulsor. The unit is  delivered as a part of the Steerprop 
delivery. The hydraulic unit need to be connected to the propulsor with 6 

pipes between the propulsor and the hydraulic unit and 5 pipes between 
the hydraulic unit and the propulsor. 

 

25. 

Cooling 

The Steerprop units are equipped with coolers that need to be connected 
to a cooling water system (fresh or sea water) the water capacity need is 

100 …200 litres/min, depending on propulsor size and power. These values 
are for an input water temperature of +32º C. 

background image

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 

 

 

Steerprop Ltd. 

P.O. Box 217 

FIN-26101 RAUMA 
Finland 

 
e-mail: steerprop@steerprop.com  

phone: +358 2 8387 7900 
fax: 

+358 2 8387 7910 

 

 

w w w . s t e e r p r o p . c o m