Chapt 07 Lect01

background image

Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

© 1999 Yijun Liu, University of Cincinnati

157

Chapter 7. Structural Vibration and Dynamics

Natural frequencies and modes

Frequency response (F(t)=F

o

sin

ωt)

Transient response (F(t) arbitrary)


I. Basic Equations

A. Single DOF System

From Newton’s law of motion (ma = F), we have

u

c

u

k

f(t)

u

m

&

&&

=

,

i.e.

f(t)

u

k

u

c

u

m

=

+

+

&

&&

, (1)

where u is the displacement,

dt

du

u

/

=

&

and

.

/

2

2

dt

u

d

u

=

&

&

F(t)

m

m

f=f(t)

k

c

f(t)

u

c

ku

&




force

-

)

(

damping

-

stiffness

-

mass

-

t

f

c

k

m

x, u

background image

Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

© 1999 Yijun Liu, University of Cincinnati

158

Free Vibration:

f(t) = 0 and no damping (c = 0)

Eq. (1) becomes

0

=

+

u

k

u

m &

&

.

(2)

(meaning: inertia force + stiffness force = 0)

Assume:

t)

(

U

u(t)

ω

sin

=

,

where

ω

is the frequency of oscillation, U the amplitude.

Eq. (2) yields

0

sin

sin

2

=

+

t)

ù

(

U

k

t)

ù

(

m

ù

U

i.e.,

[

]

0

2

=

+

U

k

m

ω

.

For nontrivial solutions for U, we must have

[

]

0

2

=

+

k

m

ω

,

which yields

m

k

=

ω

.

(3)

This is the circular natural frequency of the single DOF
system (rad/s). The cyclic frequency (1/s = Hz) is

π

ω

2

=

f

,

(4)

background image

Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

© 1999 Yijun Liu, University of Cincinnati

159

With non-zero damping c, where

m

k

m

c

c

c

2

2

0

=

=

<

<

ω

(c

c

= critical damping) (5)

we have the damped natural frequency:

2

1

ξ

ω

ω

=

d

,

(6)

where

c

c

c

=

ξ

(damping ratio).

For structural damping:

15

.

0

0

<

ξ

(usually 1~5%)

ω

ω

d

.

(7)

Thus, we can ignore damping in normal mode analysis.

u

t

U

U

T = 1 / f

U n d a m p e d F r e e V i b r a t i o n

u = U s i n w t

u

t

Damped Free Vibration

background image

Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

© 1999 Yijun Liu, University of Cincinnati

160

B. Multiple DOF System

Equation of Motion

Equation of motion for the whole structure is

)

(t

f

Ku

u

C

u

M

=

+

+

&

&

&

,

(8)

in which:

u

nodal displacement vector,

M

mass matrix,

C

damping matrix,

K

stiffness matrix,

f

forcing vector.

Physical meaning of Eq. (8):

Inertia forces + Damping forces + Elastic forces

= Applied forces

Mass Matrices

Lumped mass matrix (1-D bar element):

1

ρ,A,L 2

u

1

u

2

Element mass matrix is found to be

4

4 3

4

4 2

1

matrix

diagonal

2

0

0

2

=

AL

AL

ρ

ρ

m

2

1

AL

m

ρ

=

2

2

AL

m

ρ

=

background image

Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

© 1999 Yijun Liu, University of Cincinnati

161

In general, we have the consistent mass matrix given by

dV

V

T

=

N

N

m

ρ

(9)

where N is the same shape function matrix as used for the
displacement field.

This is obtained by considering the kinetic energy:

( )

( ) ( )

u

N

N

u

u

N

u

N

u

m

u

m

&

43

42

1

&

&

&

&

&

&

&

&

=

=

=

=

=

Κ

V

T

T

V

T

V

T

V

T

dV

dV

dV

u

u

dV

u

mv

ρ

ρ

ρ

ρ

2

1

2

1

2

1

2

1

)

2

1

(cf.

2

1

2

2

Bar Element (linear shape function):

[

]

3

/

1

6

/

1

6

/

1

3

/

1

1

1

2

1

u

u

AL

ALd

V

&

&

&

&

=

 −

=

ρ

ξ

ξ

ξ

ξ

ξ

ρ

m

(10)

background image

Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

© 1999 Yijun Liu, University of Cincinnati

162

Element mass matrices:

local coordinates

to global coordinates

assembly of the global structure mass matrix M.

Simple Beam Element:

4

22

3

13

22

156

13

54

3

13

4

22

13

54

22

156

420

2

2

1

1

2

2

2

2

θ

θ

ρ

ρ

&

&

&

&

&

&

&

&

v

v

L

L

L

L

L

L

L

L

L

L

L

L

AL

dV

T

=

=

V

N

N

m

(11)

Units in dynamic analysis (make sure they are consistent):

Choice I

Choice II

t (time)

L (length)

m (mass)

a (accel.)

f (force)

ρ (density)

s

m

kg

m/s

2

N

kg/m

3

s

mm

Mg

mm/s

2

N

Mg/mm

3

1

1

θ

v

2

2

θ

v

ρ, A, L


Wyszukiwarka

Podobne podstrony:
Chapt 07 Lect04
Chapt 01 Lect01
Chapt 02 Lect01
Chapt 06 Lect01
Chapt 05 Lect01
Chapt 03 Lect01
Chapt 07 Lect02
Chapt 04 Lect01
Chapt 07 Lect03
Chapt 07
EŚT 07 Użytkowanie środków transportu
07 Windows
07 MOTYWACJAid 6731 ppt
Planowanie strategiczne i operac Konferencja AWF 18 X 07
Wyklad 2 TM 07 03 09

więcej podobnych podstron