Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

Chapter 6. Solid Elements for 3-D Problems

I. 3-D Elasticity Theory

Stress State:

y

F

x

z

y , v

σ y

τ yx

τ yz

τ xy

τ zy

σ x

τ zx

τ

σ

xz

x, u

z

z, w

© 1999 Yijun Liu, University of Cincinnati 138

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

 σ 

x

 σ 

y





ó ={σ }  σ 

z

=

,

or





[σ ij]

)

1

(

τ xy





 τ 

yz

τ 

zx

Strains:

ε x





ε





y

å = {





ε }

ε z

=

,

or





[ε ij]

(2)

γ xy





γ yz





 γ 

zx

Stress-strain relation:

1 − v

v

v

0

0

0



σ

ε

x 



  x 





 v

1 − v

v

0

0

0

  

σ

ε

y 

 v

v

1 − v

0

0

0

  y 

 σ

1 2 v

ε

z 

E



−

  z 



 =

 0

0

0

0

0

  

τ

1

(

v 1

)(

2 v

2

)

γ

xy

+

−







1 − 2 v

  xy 

τ 

 0

0

0

0

0

 γ 

 yz 



2

  yz 

τ

1 2 v

γ

zx 



−

0

0

0

0

0

  zx 



2



o r

ó = Eå

( )

3

© 1999 Yijun Liu, University of Cincinnati 139

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

Displacement:

 u( x, y, z)   u 

1



  

u =

v( x, y, z)



= u

(4)

 

2



  

(

w x, y, z)



  u 

3

Strain-Displacement Relation:

u

∂

v

∂

w

∂

ε =

,

ε =

, ε =

,

x

x

y

∂

y

z

∂

z

∂

v

∂

u

∂

w

∂

v

∂

u

∂

w

∂

γ =

+

, γ

=

+

, γ

=

+

( )

5

xy

x

∂

y

yz

∂

y

∂

z

xz

∂

z

∂

x

∂

or

1

u

 ∂

u

∂ 

j

i

ε = 

+

,

i j



=

ij

( ,

,

1 ,

2 )

3

2

x

∂

x

∂





j

i

simply,

or

1

ε = u + u

ij

( i, j j, i ) (

notation)

tensor

2

© 1999 Yijun Liu, University of Cincinnati 140

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

Equilibrium Equations:

∂σ

∂τ

τ

xy

x

∂

+

+

xz

+ fx = 0 ,

∂ x

∂ y

∂ z

∂τ

σ

τ

yx

∂ y

∂

+

+

yz

+ f y = 0 ,

(6)

∂ x

∂ y

∂ z

∂τ

∂τ

σ

zy

zx

∂

+

+

z

+ fz = 0 ,

∂ x

∂ y

∂ z

or

σ

f

ij j +

i = 0

,

Boundary Conditions (BC’s):

u = u , on Γ ( specified nt

displaceme

)

i

i

u

t = t , on Γ ( specified traction ) (7)

i

i

σ

(

traction t =σ n ) i

ij

j

p

n

Γσ

Γ( = Γ u + Γ )

σ

Γ u

Stress Analysis:

Solving equations in (6) under the BC’s in (7).

© 1999 Yijun Liu, University of Cincinnati 141

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

II. Finite Element Formulation

Displacement Field:

N

u =

N u

∑ i i

i =1

N

=

v

N v

∑

(8)

i

i

i =1

N

w =

N w

∑ i i

i =1

Nodal values

In matrix form:

u 1

 

 v 

1

 u 

N

0

0

N

0

0

L

w

1

2

1





 

 

 v 

= 0 N 0 0 N 0





L

 u 

1

2

2

( )

9

 

 w

 0 0 N 0 0



N



L

v

N

 

(3× )

1

1

2

(3 3

×

)

2

 w 

2

 M 

 (3 N× )1

or

u = N d

Using relations (5) and (8), we can derive the strain vector ε =B d

(6× 1) (6× 3N)× (3N× 1)

© 1999 Yijun Liu, University of Cincinnati 142

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

Stiffness Matrix:

k =

T

B E B dv

10

(

)

∫ v

(3×N) (3N× 6)× (6× 6)× (6× 3N) Numerical quadratures are often needed to evaluate the above integration.

Rigid-body motions for 3-D bodies (6 components): 3 translations, 3 rotations.

These rigid-body motions (singularity of the system of equations) must be removed from the FEA model to ensure the quality of the analysis.

© 1999 Yijun Liu, University of Cincinnati 143