Chapt 06 Lect02

background image

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

© 1999 Yijun Liu, University of Cincinnati

144

III Typical 3-D Solid Elements

Tetrahedron:

Hexahedron (brick):

Penta:

Avoid using the linear (4-node) tetrahedron element in 3-D
stress analysis (Inaccurate! But it is OK for dynamic analysis).

linear (4 nodes) quadratic (10 nodes)

linear (8 nodes) quadratic (20 nodes)

linear (6 nodes) quadratic (15 nodes)

background image

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

© 1999 Yijun Liu, University of Cincinnati

145

Element Formulation:

Linear Hexahedron Element

Displacement field in the element:

)

11

(

,

,

8

1

8

1

1

8

1

=

=

=

=

=

=

i

i

i

i

i

i

i

i

i

w

N

w

v

N

v

u

N

u

6

5

y 8

7

2

1
4

3

mapping (x

↔ξ

)

x (-1

ξ

,

η

,

ζ

1)

z

η

(-1,1,-1) 4 3 (1,1,-1)

(-1,1,1) 8

7 (1,1,1)

o

ξ

(-1,-1,-1) 1

2 (1,-1,-1)

(-1,-1,1) 5

6 (1,-1,1)

ζ

background image

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

© 1999 Yijun Liu, University of Cincinnati

146

Shape functions:

.

)

1

(

)

1

(

)

1

(

8

1

)

,

,

(

)

12

(

,

)

1

(

)

1

(

)

1

(

8

1

)

,

,

(

,

)

1

(

)

1

(

)

1

(

8

1

)

,

,

(

,

)

1

(

)

1

(

)

1

(

8

1

)

,

,

(

8

3

2

1

ζ

η

ξ

ζ

η

ξ

ζ

η

ξ

ζ

η

ξ

ζ

η

ξ

ζ

η

ξ

ζ

η

ξ

ζ

η

ξ

+

+

=

+

+

=

+

=

=

N

N

N

N

M

M

Note that we have the following relations for the shape
functions:

.

1

)

,

,

(

.

8

,

,

2

,

1

,

,

)

,

,

(

8

1

=

=

=

=

i

i

ij

j

j

j

i

N

j

i

N

ζ

η

ξ

δ

ζ

η

ξ

L

Coordinate Transformation (Mapping):

)

13

(

.

,

,

8

1

8

1

8

1

=

=

=

=

=

=

i

i

i

i

i

i

i

i

i

z

N

z

y

N

y

x

N

x

The same shape functions are used as for the displacement

field.

Isoparametric element.

background image

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

© 1999 Yijun Liu, University of Cincinnati

147

Jacobian Matrix:

matrix

Jacobian

z

u

y

u

x

u

z

y

x

z

y

x

z

y

x

u

u

u

J





=





)

14

(

ζ

ζ

ζ

η

η

η

ξ

ξ

ξ

ζ

η

ξ

=





=





=

.

,

,

8

1

1

etc

u

N

u

u

u

u

z

u

y

u

x

u

i

i

i

ξ

ξ

ζ

η

ξ

J

and

)

15

(

,

1





=





ζ

η

ξ

v

v

v

z

v

y

v

x

v

J

also for w.

background image

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

© 1999 Yijun Liu, University of Cincinnati

148

where d is the nodal displacement vector,

i.e.,

)

16

(

d

B

å

=

(6

×

1) (6

×

24)

×

(24

×

1)

d

B

å

=

=

+

+

+

=

=

)

15

(

use

zx

yz

xy

z

y

x

x

w

z

u

z

v

y

w

y

u

x

x

z

w

y

v

x

u

L

γ

γ

γ

ε

ε

ε

background image

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

© 1999 Yijun Liu, University of Cincinnati

149

Strain energy,

)

17

(

2

1

2

1

)

(

2

1

2

1

d

B

E

B

d

å

E

å

å

E

å

å

ó





=

=

=

=

V

T

T

V

T

V

T

V

T

dV

dV

dV

dV

U

Element stiffness matrix,

)

18

(

=

V

T

dV

B

E

B

k

(24

×

24) (24

×

6)

×

(6

×

6)

×

(6

×

24)

In

ξηζ

coordinates:

)

19

(

)

det

(

ζ

η

ξ

d

d

d

dV

J

=

)

20

(

)

(det

1

1

1

1

1

1

∫ ∫ ∫

− − −

=

ζ

η

ξ

d

d

d

T

J

B

E

B

k

( Numerical integration)

3-D elements usually do not use rotational DOFs.

background image

Lecture Notes: Introduction to Finite Element Method Chapter 6. Solid Elements

© 1999 Yijun Liu, University of Cincinnati

150

Loads:

Distributed loads

Nodal forces

Area =A Nodal forces for 20-node

Hexahedron

Stresses:

d

B

E

å

E

ó

=

=

Principal stresses:

.

,

,

3

2

1

σ

σ

σ

von Mises stress:

2

1

3

2

3

2

2

2

1

)

(

)

(

)

(

2

1

σ

σ

σ

σ

σ

σ

σ

σ

+

+

=

=

VM

e

.

Stresses are evaluated at selected points (including nodes)

on each element. Averaging (around a node, for example) may
be employed to smooth the field.

Examples: …

pA/3 pA/12

p


Wyszukiwarka

Podobne podstrony:
Chapt 02 Lect02
Chapt 06 Lect03
Chapt 06 Lect01
Chapt 01 Lect02
Chapt 07 Lect02
Chapt 05 Lect02
Chapt 04 Lect02
Chapt 03 Lect02
Chapt 02 Lect02
Chapt 06
MT st w 06
Kosci, kregoslup 28[1][1][1] 10 06 dla studentow
06 Kwestia potencjalności Aid 6191 ppt
06 Podstawy syntezy polimerówid 6357 ppt
06
06 Psych zaburz z somatoformiczne i dysocjacyjne
GbpUsd analysis for July 06 Part 1

więcej podobnych podstron