PHENYLCOPPER
1
Phenylcopper
1
PhCu
[3220-49-3]
C
6
H
5
Cu
(MW 140.66)
InChI = 1/C6H5.Cu/c1-2-4-6-5-3-1;/h1-5H;/rC6H5Cu/c7-6-4-2
-1-3-5-6/h1-5H
InChIKey = RIUFSTRETWGIIW-DCWWSCNNAF
(nucleophilic reagent for substitution reactions;
1a,b
selective re-
agent for conjugate additions;
1a,c,d,2
couples with aryl halides to
form biaryls
3
)
Alternate Name:
copper phenyl.
Physical Data:
slightly yellow solid; mp 100
◦
C (dec).
13
Solubility:
insol ether, tetrahydrofuran.
Preparative Methods:
phenylcopper and other arylcopper species
are most commonly prepared from equimolar amounts of alkyl-
lithium or Grignard reagent and purified copper(I) halide in
ether or THF.
4
Arylcoppers can be prepared from the corre-
sponding aryl halides and highly active zerovalent Copper.
5
Handling, Storage, and Precautions:
decomposes on heating in
solution. Hydrolyzed by H
2
O.
13
Use in a fume hood.
Nucleophilic
Substitutions.
Arylcoppers
are
suitable
nucleophiles for reaction with acid chlorides (to prepare aryl
ketones),.
5,6
primary alkyl halides,
5a,b
epoxides,
5c
β
-lactones
(to prepare β-aryl carboxylic acids),
7
and 1,3-dioxolan-4-ones
(to prepare protected secondary alcohols).
8
Arylcopper species
favor S
N
2
′
substitutions of allylic bromides
9
and propargyl
sulfonates.
4d
See also Methylcopper.
Conjugate Additions. Phenylcopper will add in Michael fash-
ion to conjugated enones,.
6
cyanoalkynes,
10
alkynyl sulfoxides,
4c
and alkenyl sulfones.
11
When performed in the presence of
Chlorotrimethylsilane
12a,b
or Iodotrimethylsilane,
12b,c
Michael
addition of arylcoppers to enones, enals, and enoates is acceler-
ated and 1,4-selectivity (vs. 1,2) is enhanced. Rate and selectivity
can also be improved by the presence of Dimethyl Sulfide.
6
See
also Phenylcopper–Boron Trifluoride Etherate.
Biaryl Synthesis. Although arylcoppers are not typically used
for the synthesis of unsymmetrical biaryls, a combination of
phenylcopper and 2-iodopyridine, or 2-pyridylcopper and an
iodoarene, provides 2-arylpyridines in good yield.
4b
1.
(a) Normant, J. F., Synthesis 1972, 63. (b) Posner, G. H., Org. React.
1975, 22, 253. (c) Posner, G. H., Org. React. 1972, 19, 1. (d) Taylor, R.
J. K., Synthesis 1985, 364.
2.
House, H. O.; Respess, W. L.; Whitesides, G. M., J. Org. Chem. 1966,
31
, 3128.
3.
(a) Nilsson, M.; Wennerström, O., Tetrahedron Lett. 1968, 3307.
(b) Nilsson, M.; Wennerström, O., Acta Chem. Scand. 1970, 24, 482.
(c) Fanta, P. E., Synthesis 1974, 9.
4.
(a) Costa, G.; Camus, A.; Gatti, L.; Marsich, N., J. Organomet. Chem.
1966, 5, 568. (b) Malmberg, H.; Nilsson, M., Tetrahedron 1986, 42,
3981. (c) Truce, W. E.; Lusch, M. J., J. Org. Chem. 1978, 43, 2252.
(d) Westmijze, H.; Vermeer, P., Synthesis 1979, 390. (e) Ruitenberg, K.;
Westmijze, H.; Kleijn, H.; Vermeer, P., J. Organomet. Chem. 1984, 277,
227.
5.
(a) Ebert, G. W.; Rieke, R. D., J. Org. Chem. 1984, 49, 5280. (b) Ebert,
G. W.; Rieke, R. D., J. Org. Chem. 1988, 53, 4482. (c) Rieke, R. D.;
Wehmeyer, R. M.; Wu, T.-C.; Ebert, G. W., Tetrahedron 1989, 45, 443.
6.
Bertz, S. H.; Dabbagh, G., Tetrahedron 1989, 45, 425.
7.
Kawashima, M.; Sato, T.; Fujisawa, T., Tetrahedron 1989, 45, 403.
8.
Heckmann, B.; Mioskowski, C.; Yu, J.; Falck, J. R., Tetrahedron Lett.
1992, 33, 5201.
9.
Kang, J.; Cho, W.; Lee, W. K., J. Org. Chem. 1984, 49, 1838.
10.
Westmijze, H.; Kleijn, H.; Vermeer, P., Synthesis 1978, 454.
11.
Hutchinson, D. K.; Hardinger, S. A.; Fuchs, P. L., Tetrahedron Lett. 1986,
27
, 1425.
12.
(a) Matsuzawa, S.; Horiguchi, Y.; Nakamura, E.; Kuwajima, I.,
Tetrahedron 1989
, 45, 349. (b) Bergdahl, M.; Lindstedt, E.-L.; Nilsson,
M.; Olsson, T., Tetrahedron 1988, 44, 2055. (c) Bergdahl, M.; Lindstedt,
E.-L.; Nilsson, M.; Olsson, T., Tetrahedron 1989, 45, 535.
13.
Dictionary of Organometallic Compounds
, 2nd ed.; Macintyre, J. E.,
Ed.; Chapman and Hall: New York, 1995; Vol. 1, p 1079.
John N. Haseltine
Georgia Institute of Technology, Atlanta, GA, USA
Avoid Skin Contact with All Reagents