ZINC BROMIDE
1
Zinc Bromide
1
ZnBr
2
[7699-45-8]
Br
2
Zn
(MW 225.19)
InChI = 1/2BrH.Zn/h2*1H;/q;;+2/p-2/f2Br.Zn/h2*1h;/q2*-1;m
InChIKey = VNDYJBBGRKZCSX-JCMKJQRZCM
(used in the preparation of organozinc reagents via trans-
metalation;
1
a mild Lewis acid useful for promoting addition
2
and substitution reactions
3
)
Physical Data:
mp 394
◦
C; bp 697
◦
C (dec); d 4.201 g cm
−3
.
Solubility:
sol Et
2
O, H
2
O (1 g/25 mL), 90% EtOH (1 g/0.5 mL).
Form Supplied in:
granular white powder; principal impurity is
H
2
O.
Analysis of Reagent Purity:
melting point.
Purification:
heat to 300
◦
C under vacuum (2 × 10
−2
mmHg) for
1 h, then sublime.
Handling, Storage, and Precautions:
very hygroscopic; store un-
der anhydrous conditions. Irritant.
Organozinc Reagents.
The transmetalation of organomag-
nesium, organolithium, and organocopper reagents by anhydrous
ZnBr
2
in ethereal solvents offers a convenient method of preparing
organozinc bromides and diorganozinc reagents.
1a
Alternatively,
anhydrous ZnBr
2
may be reduced by potassium metal to result in
highly activated Zn
0
, which is useful for the preparation of zinc
reagents through oxidative addition to organic halides.
4
Alkyl,
allylic, and propargylic zinc reagents derived by these methods
have shown considerable value in their stereoselective and regios-
elective addition reactions with aldehydes, ketones, imines, and
iminium salts.
1a,5
Zinc enolates used in the Reformatsky reac-
tion may also be prepared through transmetalation using ZnBr
2
.
1b
Organozinc species are especially useful in palladium-and nickel-
catalyzed coupling reactions of sp
2
carbon centers. In this fashion,
sp
2
–sp
3
(eq 1)
6
and sp
2
–sp
2
(eqs 2 and 3)
7,8
carbon–carbon bonds
are formed selectively in high yields. The enantioselective cross
coupling of secondary Grignard reagents with vinyl bromide is
strongly affected by the presence of ZnBr
2
, which accelerates the
reaction and inverts its enantioselectivity (eq 4).
9
(1)
CO
2
Me
I
CO
2
Me
Ph
1. ZnBr
2
, THF
2.
Ni(PPh
3
)
4
THF–Et
2
O, 25 °C
88%
PhCH
2
Li
Organozinc intermediates formed via transmetalation using
ZnBr
2
have been used to effect carbozincation of alkenes and
alkynes through metallo-ene and metallo-Claisen reactions. Both
intermolecular and intramolecular variants of these reactions have
been described, often proceeding with high levels of stereoselec-
tivity and affording organometallic products that may be used in
subsequent transformations (eqs 5 and 6),
10
including alkenation
(eq 6).
10b,c
Bimetallic zinc–zirconium reagents have also been
developed that offer a method for the alkenation of carbonyl com-
pounds (eq 7).
11
(2)
OCONEt
2
Ph
Li
OCONEt
2
Br
Ph
1. ZnBr
2
, THF
80%
Pd(PPh
3
)
4
2.
(3)
2
I
C
5
H
11
I
CO
2
Me
CuLi
Et
Et
C
5
H
11
Et
CO
2
Me
ZnBr
2
Pd(PPh
3
)
4
THF–Et
2
O
ZnBr
2
, THF
Pd(PPh
3
)
4
96%
81%
(4)
NiCl
2
, Et
2
O, 0 °C
MgCl
Br
MeS
PPh
2
NMe
2
R
1
R
2
without ZnBr
2
with ZnBr
2
R
1
= Me, R
2
= H; >95% (52% ee)
R
1
= H, R
2
= Me; >95% (49% ee)
(5)
OMe
TMS
TMS
OMe
X
1. BuLi, THF
2. ZnBr
2
X = ZnBr
X = H
80%
H
2
O
1. t-BuLi
2.
3. ZnBr
2
M
1
, M
2
= metal
M
1
, M
2
= H
1. PhCHO
2. H
3
O
+
Zn
O
Pr
t-
Bu
Pr
t-
BuO
I
Pr
O-t-Bu
O-t-Bu
Pr
Ph
M
2
M
1
MgBr
(6)
75%, 95% de
68%
95% de
H
3
O
+
Concerted Ring-forming Reactions.
The mild Lewis acid
character of ZnBr
2
sometime imparts a catalytic effect on ther-
mally allowed pericyclic reactions. The rate and stereoselectivity
Avoid Skin Contact with All Reagents
2
ZINC BROMIDE
of cycloaddition reactions (eq 8),
12
including dipolar cycloaddi-
tions (eq 9),
13
are significantly improved by the presence of this
zinc salt.
(7)
+
C
6
H
13
MgBr
ZnBr
Cl
Cp
2
Zr
CHO
C
7
H
15
1. ZnBr
2
C
7
H
15
83%, 100% (E)
2. H(Cl)ZrCp
2
(8)
CO
2
Me
CO
2
Me
+
CH
2
Cl
2
no catalyst, 5 h
with ZnBr
2
, 3 h
70%, 78% endo
80%, 95% endo
0 °C
+
Ph
N
Ph
OH
N
O
Ph
O
O
+
ZnBr
2
H
H
OH
O
Ph
(9)
single isomer
CH
2
Cl
2
65%
Some intramolecular ene reactions benefit from ZnBr
2
catalysis
to afford the cyclic products under milder conditions, in higher
yields and selectivities (eqs 10 and 11).
14,15
Generally, the use of
ZnBr
2
is preferred over Zinc Chloride or Zinc Iodide in this type
of reaction.
15
Activation of C=
=
=X Bonds. Lewis acid activation of carbonyl
compounds by ZnBr
2
promotes the addition of allylsilanes and
silyl ketene acetals.
16
Addition to imines has also been reported.
17
In general, other Lewis acids have been found to be more useful,
though in some instances ZnBr
2
has proven to be advantageous
(eq 12).
2
(10)
180 °C, o-dichlorobenzene
ZnBr
2
, CH
2
Cl
2
, 25 °C
66% (83% de)
79% (95% de)
MeO
2
C
MeO
2
C
MeO
2
C
MeO
2
C
reagent
(11)
ZnBr
2
(R
1
= CN, R
2
= H):(R
1
= H, R
2
= CN) = 88:12
S-p-Tol
CN
O
S-p-Tol
H
O
R
1
R
2
CH
2
Cl
2
82%
(12)
OTMS
Ph
CO
2
H
CO
2
H
OTMS
OH
OH
Ph
1. catalyst
+
ZnBr
2
, THF, 20 °C, 6 h
CsF, CH
2
Cl
2
. 20 °C, 14 h
100:0
5:95
+
PhCHO
2. H
3
O
+
Activation of C–X Bonds.
Even more important than car-
bonyl activation, ZnBr
2
promotes substitution reactions with suit-
ably active organic halides with a variety of nucleophiles. Alky-
lation of silyl enol ethers and silyl ketene acetals using benzyl
and allyl halides proceeds smoothly (eq 13).
3
Especially use-
ful electrophiles are α-thio halides which afford products that
may be desulfurized or oxidatively eliminated to result in α,β-
unsaturated ketones, esters, and lactones (eq 14).
18
Other elec-
trophiles that have been used with these alkenic nucleophiles
include Chloromethyl Methyl Ether, HC(OMe)
3
, and Acetyl
Chloride
.
3,19
(13)
ZnBr
2
CH
2
Cl
2
, rt
68%
ZnBr
2
CH
2
Cl
2
, rt
83%
Ph
Br
Ph
Ph
Ph
Ph
OTMS
Br
O
O
+
1. m-CPBA
90%
OTMS
OTMS
Cl
O
O
OTMS
SPh
H
H
H
H
O
O
SPh
(14)
1. ZnBr
2
92%
2. H
3
O
+
2. DBU
Enol ethers and allylic silanes and stannanes will engage
cyclic α-seleno sulfoxides,
20
ω
-acetoxy lactams,
21
and acyl
glycosides (eq 15)
22
in the presence of ZnBr
2
catalysis. Along
these lines, it has been found that ZnBr
2
is superior to Boron Tri-
fluoride Etherate
in promoting glycoside bond formation using
trichloroimidate-activated glycosides (eq 16).
23
Imidazole car-
bamates are also effective activating groups for ZnBr
2
-mediated
glycosylation (eq 17).
24
Cyclic acetals also undergo highly selective, Lewis acid-
dependent ring opening substitution with Cyanotrimethylsilane
(eq 18).
25
Reduction.
Complexation with ZnBr
2
has been shown to
markedly improve stereoselectivity in the reduction of certain
heteroatom-substituted ketones (eqs 19 and 20).
26,27
Furthermore,
the anti selectivity observed in BF
3
·OEt
2
-mediated intramolecular
hydrosilylation of ketones is reversed when ZnBr
2
is used instead
(eq 21).
28
A list of General Abbreviations appears on the front Endpapers
ZINC BROMIDE
3
(15)
O
H
OBz
BzO
BzO
OBz
OBz
BzO
OBz
O
TMS
+
ZnBr
2
α:β = 1:1
110 °C, 3 h
100%
(16)
+
ZnBr
2
, CH
2
Cl
2
3
Å mol sieves,
∆
60%
OAc
O
O
H
AcO
H
AcO
AcO
AcO
H
H
OAc
OAc
O
O
HO
H
H
H
H
H
H
H
H
H
H
H
H
O
O
O
O
O
OC(NH)CCl
3
OAc
O
OAc
H
H
AcO
AcO
AcO
H
AcO
H
O
OAc
(17)
O
OBn
OBn
BnO
OBn
H
O
Ph
Ph
MeO
2
C
CO
2
Me
OH
H
OBn
BnO
OBn
OBn
O
O
O
N
N
ZnBr
2
THF, Et
2
O,
∆
88%
10:1 de
(18)
O
O
MeO
Ph
H
MeO
OH
O
OH
O
MeO
CN
NC
Ph
Ph
+
ZnBr
2
, CH
2
Cl
2
, 25 °C, 20 h
TiCl
4
, CH
2
Cl
2
, 25 °C, 20 h
1:250
250:1
TMSCN
(19)
Ph
Ph
N
O
OH
N
Ph
Ph
1. ZnBr
2
, MeOH
2. NaBH
4
100%
H
H
(20)
ZnBr
2
, THF
91%
+
66:34
S
p-
Tol
O
O
OH
S
O
p-
Tol
S
p-
Tol
O
OH
DIBAL
i-
Pr
i-
Pr
OSiMe
2
H
O
O
O
Me
2
Si
i-
Pr
i-
Pr
i-
Pr
i-
Pr
O
Me
2
Si
O
(21)
+
BF
3
· OEt
2
, CH
2
Cl
2
, –80 °C, 2 h
ZnBr
2
, CH
2
Cl
2
, –80 °C, 8 h
23:1
1:6
Deprotection.
ZnBr
2
is a very mild reagent for sev-
eral deprotection protocols, including the detritylation of
nucleotides
29
and deoxynucleotides,
30
N
-deacylation of N,O-
peracylated nucleotides,
31
and the selective removal of Boc groups
from secondary amines in the presence of Boc-protected primary
amines.
32
Perhaps the most widespread use of ZnBr
2
for deprotec-
tion is in the mild removal of MEM ethers to afford free alcohols
(eq 22).
33
(22)
H
O
O
OMe
OH
H
ZnBr
2
CH
2
Cl
2
25 °C, 10 h
93%
Miscellaneous.
An important method for the synthesis of
stereodefined trisubstituted double bonds involves the treatment
of cyclopropyl bromides with ZnBr
2
. The (E) isomer is obtained
almost exclusively by this method (eq 23).
34
(23)
1. PBr
3
, LiBr
collidine, Et
2
O
2. ZnBr
2
, Et
2
O
>95%
(E)
CO
2
Me
OH
Br
CO
2
Me
The rearrangement of a variety of terpene oxides has been
examined (eq 24).
35
While ZnBr
2
is generally a satisfactory cat-
alyst for this purpose, other Lewis acids, including ZnCl
2
36
and
Magnesium Bromide
,
37
are advantageous in some instances.
(–)-
α-Pinene
ZnBr
2
88%
O
CHO
H
(24)
PhH, 80 °C
In the presence of ZnBr
2
/48% Hydrobromic Acid, suitably
functionalized cyclopropanes undergo ring expansion to afford
cyclobutane (eq 25)
38
and α-methylene butyrolactone products
(eq 26).
39
One-carbon ring expansion has been reported when
certain trimethylsilyl dimethyl acetals are exposed to ZnBr
2
with
warming (eq 27).
40
Et
SPh
OH
SPh
SPh
Et
SPh
Et
(25)
48% HBr
1. Cu(OTf)
2
i-Pr
2
NEt
81%
ZnBr
2
, PhSH
95%
2. 450 °C
Avoid Skin Contact with All Reagents
4
ZINC BROMIDE
EtOH, 100 °C, 6 h
50%
(26)
O
H
H
OH
CO
2
Et
O
H
H
48% HBr, ZnBr
2
(27)
40 °C, 30 min
100%
TMS
OMe
OMe
OMe
ZnBr
2
, CH
2
Cl
2
1.
(a) Knochel, P., Comprehensive Organic Synthesis 1991, 1, Chapter 1.7.
(b) Rathke, M. W.; Weipert, P., Comprehensive Organic Synthesis 1991,
2
, Chapter 1.8.
2.
For an example: Bellassoued, M.; Ennigrou, R.; Gaudemar, M., J.
Organomet. Chem. 1988
, 338, 149.
3.
For examples: (a) Reetz, M. T.; Maier, W. F., Angew. Chem., Int. Ed.
Engl. 1978
, 17, 48. (b) Reetz, M. T.; Chatziiosifidis, I.; Löwe, W. F.;
Maier, W. F., Tetrahedron Lett. 1979, 1427. (c) Paterson, I., Tetrahedron
Lett. 1979
, 1519.
4.
Riecke, R. D.; Uhm, S. J.; Hudnall, P. M., J. Chem. Soc., Chem. Commun.
1973
, 269.
5.
For representative examples of allylic and propargylic zinc reagents:
(a) Yamamoto, Y.; Nishii, S.; Maruyama, K.; Komatsu, T.; Ito, W., J.
Am. Chem. Soc. 1986
, 108, 7778. (b) Yamamoto, Y.; Ito, W., Tetrahedron
1988
, 44, 5414. (c) Yamamoto, Y.; Ito, W.; Maruyama, K., J. Chem. Soc.,
Chem. Commun. 1985
, 1131. (d) Yamanoto, Y.; Komatsu, T.; Maruyama,
K., J. Chem. Soc., Chem. Commun. 1985, 814. (e) Fronza, G.; Fuganti, C.;
Grasselli, P.; Pedrocchi-Fantoni, G.; Zirotti, C., Tetrahedron Lett. 1982,
23
, 4143. (f) Fujisawa, T.; Kojima, E.; Itoh, T.; Sato, T., Tetrahedron
Lett. 1985
, 26, 6089. (g) Pornet, J.; Miginiac, L., Bull. Soc. Chem. Fr.
1975
, 841. (h) Yamamoto, Y.; Komatsu, T.; Maruyama, K., J. Organomet.
Chem. 1985
, 285, 31. (i) Bouchoule, C.; Miginiac, P., C. R. Hebd. Seances
Acad. Sci., Ser. C 1968
, 266, 1614. (j) Miginiac, L.; Mauzé, B., Bull. Soc.
Chem. Fr. 1968
, 3832. (k) Arous-Chtara, R.; Gaudemar, M.; Moreau, J.-
L., C. R. Hebd. Seances Acad. Sci., Ser. C 1976, 282, 687. (l) Moreau,
J.-L.; Gaudemar, M., Bull. Soc. Chem. Fr. 1971, 3071. (m) Miginiac, L.;
Mauzé, B., Bull. Soc. Chem. Fr. 1968, 2544.
6.
Negishi, E.; King, A. O.; Okudado, N., J. Org. Chem. 1977, 42, 1821.
7.
Sengupta, S.; Snieckus, V., J. Org. Chem. 1990, 55, 5680. See
also: Gilchrist, T. L.; Summersell, R. J. Tetrahedron Lett. 1987, 28,
1469.
8.
(a) Jabri, N.; Alexakis, A.; Normant, J. F., Bull. Soc. Chem. Fr., Part
2 1983
, 321. (b) Jabri, N.; Alexakis, A.; Normant, J. F., Tetrahedron
Lett. 1982
, 23, 1589. (c) Jabri, N.; Alexakis, A.; Normant, J. F.,
Tetrahedron Lett. 1981
, 22, 959. (d) Jabri, N.; Alexakis, A.; Normant, J.
F., Tetrahedron Lett. 1981, 22, 3851.
9.
Cross, G.; Vriesema, B. K.; Boven, G.; Kellogg, R. M.; van Bolhuis, F.,
J. Organomet. Chem. 1989
, 370, 357.
10.
(a) Courtemanche, G.; Normant, J.-F., Tetrahedron Lett. 1991, 32, 5317.
(b) Marek, I.; Normant, J.-F., Tetrahedron Lett. 1991, 32, 5973. (c)
Marek, I.; Lefrançois, J.-M.; Normant, J.-F., Synlett 1992, 633.
11.
Tucker, C. E.; Knochel, P., J. Am. Chem. Soc. 1991, 113, 9888.
12.
Narayana Murthy, Y. V. S.; Pillai, C. N., Synth. Commun. 1991, 21, 783.
See also: López, R.; Carretero, J. C., Tetrahedron: Asymmetry 1991, 2,
93.
13.
Kanemasa, S.; Tsuruoka, T.; Wada, E., Tetrahedron Lett. 1993, 34,
87.
14.
Tietze, L. F.; Biefuss, U.; Ruther, M., J. Org. Chem. 1989, 54,
3120. See also: (a) Tietze, L. F.; Ruther, M., Chem. Ber. 1990,
123
, 1387. (b) Nakatani, Y.; Kawashima, K., Synthesis 1978,
147.
15.
Hiroi, K.; Umemura, M., Tetrahedron Lett. 1992, 33, 3343.
16.
(a) Mikami, K.; Kawamoto, K.; Loh, T.-P.; Nakai, T., J. Chem. Soc.,
Chem. Commun. 1990
, 1161. (b) Bellassoued, M.; Gaudemar, M.,
Tetrahedron Lett. 1988
, 29, 4551.
17.
Gaudemar, M.; Bellassoued, M., Tetrahedron Lett. 1990, 31,
349.
18.
Khan, H. A.; Paterson, I., Tetrahedron Lett. 1982, 23, 5083. See also: (a)
Paterson, I., Tetrahedron 1988, 44, 4207. (b) Khan, H. A.; Paterson,
I., Tetrahedron Lett. 1982, 23, 4811. (c) Paterson, I.; Fleming, I.,
Tetrahedron Lett. 1979
, 20, 993, 995, 2179.
19.
Fleming, I.; Goldhill, J.; Paterson, I., Tetrahedron Lett. 1979, 3209.
20.
Ren, P.; Ribezzo, M., J. Am. Chem. Soc. 1991, 113, 7803.
21.
Ohta, T.; Shiokawa, S.; Iwashita, E.; Nozoe, S., Heterocycles 1992, 34,
895.
22.
Kozikowski, A. P.; Sorgi, K. L., Tetrahedron Lett. 1982, 23, 2281.
23.
Urban, F. J.; Moore, B. S.; Breitenbach, R., Tetrahedron Lett. 1990, 31,
4421.
24.
Ford, M. J.; Ley, S. V., Synlett 1990, 255.
25.
Corcoran, R. C., Tetrahedron Lett. 1990, 31, 2101.
26.
Bartnik, R.; Lesniak, S.; Laurent, A. Tetrahedron Lett. 1981, 22,
4811.
27.
Barros, D.; Carreño, M. C.; Ruano, J. L. G.; Maestro, M. C., Tetrahedron
Lett. 1992
, 33, 2733.
28.
Anwar, S.; Davis, A. P., Tetrahedron 1988, 44, 3761.
29.
Waldemeier, F.; De Bernardini, S.; Leach, C. A.; Tamm, C., Helv. Chim.
Acta 1982
, 65, 2472.
30.
(a) Kohli, V.; Blöcker, H.; Köster, H. Tetrahedron Lett. 1980, 21, 2683.
(b) Matteuci, M. D.; Caruthers, M. H., Tetrahedron Lett. 1980, 21, 3243.
31.
Kierzek, R.; Ito, H.; Bhatt, R.; Itakura, K., Tetrahedron Lett. 1981, 22,
3761.
32.
Nigam, S. C.; Mann, A.; Taddei, M.; Wermuth, C.-G., Synth. Commun.
1989
, 19, 3139.
33.
Corey, E. J.; Gras, J.-L.; Ulrich, P., Tetrahedron Lett. 1976, 809.
34.
Johnson, W. S.; Li, T.; Faulkner, D. J.; Campbell, S. F., J. Am. Chem.
Soc. 1968
, 90, 6225. See also: (a) Brady, S. F.; Ilton, M. A.; Johnson, W.
S., J. Am. Chem. Soc. 1968, 90, 2882. (b) Nakamura, H.; Yamamoto, H.;
Nozaki, H., Tetrahedron Lett. 1973, 111.
35.
Lewis, J. B.; Hendrick, G. W., J. Org. Chem. 1965, 30, 4271. See also:
(a) Settine, R. L.; Parks, G. L.; Hunter, G. L. K., J. Org. Chem. 1964,
29
, 616. (b) Bessière-Chréieu, Y.; Bras, J. P., C. R. Hebd. Seances Acad.
Sci., Ser. C 1970
, 271, 200. (c) Clark, B. C., Jr.; Chafin, T. C.; Lee, P.
L.; Hunter, G. L. K., J. Org. Chem. 1978, 43, 519. (d) Watanabe, H.;
Katsuhara, J.; Yamamoto, N., Bull. Chem. Soc. Jpn. 1971, 44, 1328.
36.
Kaminski, J.; Schwegler, M. A.; Hoefnagel, A. J.; van Bekkum, H., Recl.
Trav. Chim. Pays-Bas 1992
, 111, 432.
37.
Serramedan, D.; Marc, F.; Pereyre, M.; Filliatre, C.; Chabardès, P.;
Delmond, B., Tetrahedron Lett. 1992, 33, 4457.
38.
Kwan, T. W.; Smith, M. B., Synth. Commun. 1992, 22, 2273.
39.
Hudrlik, P. F.; Rudnick, L. R.; Korzeniowski, S. H., J. Am. Chem. Soc.
1973
, 95, 6848.
40.
(a) Tanino, K.; Katoh, T.; Kuwajima, I., Tetrahedron Lett. 1988, 29,
1815. (b) Tanino, K.; Katoh, T.; Kuwajima, I., Tetrahedron Lett. 1988,
29
, 1819. See also: Tanino, K.; Sato, K.; Kuwajima, I., Tetrahedron Lett.
1989
, 30, 6551.
Glenn J. McGarvey
University of Virginia, Charlottesville, VA, USA
A list of General Abbreviations appears on the front Endpapers