ZINC
1
Zinc
1
Zn
[7440-66-6]
Zn
(MW 65.39)
InChI = 1/Zn
InChIKey = HCHKCACWOHOZIP-UHFFFAOYAS
(reducing agent;
2
used for preparation of organozinc reagents,
1,3
Reformatsky reagents,
4
and the Simmons–Smith reagent
(cyclopropanation)
5
)
Physical Data:
mp 419
◦
C; bp 907
◦
C; d 7.14 g cm
−3
.
Solubility:
insol organic solvents; reacts with aqueous acidic
solutions.
Form Supplied in:
dust, foil, granular, wire, mossy, rod; widely
available at low cost.
Handling, Storage, and Precautions:
slowly oxidizes in air; no
toxic properties are associated with zinc and zinc organometal-
lics; in several cases the metal requires an activation procedure
before use.
6
Original Commentary
Paul Knochel
Philipps-Universität Marburg, Marburg, Germany
Reduction of Carbon–Carbon Multiple Bonds.
Whereas
isolated double bonds are rarely reduced by zinc, triple bonds
are cleanly converted to alkenes using either Zinc/Copper Cou-
ple or Zinc Amalgam.
7
A regio- as well as stereospecific reduc-
tion of a wide range of alkynic derivatives can be performed us-
ing zinc powder (eq 1).
8
The reduction of propargylic alcohols
proves to be especially efficient (eq 2).
9
Also, the selective cis re-
duction of conjugated dienynes and trienynes proceeds well with
Zn(Cu/Ag).
10
The presence of a leaving group at the propargylic
position leads to the formation of allenes.
11
The conjugation of a
double bond with an electron-withdrawing substituent consider-
ably facilitates the reduction of the double bond.
12
The reduction
of α,β-unsaturated ketones produces the corresponding saturated
ketones.
13
Nickel catalysis allows the reduction of unsaturated
aldehydes, ketones, and esters in an aqueous medium under ultra-
sonic irradiation (eq 3).
14
>95% (Z)
(1)
Zn, ethanol
Et
Et
OH
OH
reflux, 3 h
>95%
Reduction of Carbonyl Groups. Zinc reduces ketones to ei-
ther alcohols or to a methylene unit, depending on the reaction
conditions and the nature of the substrate. For example, con-
jugation is required if reduction to a hydroxy group is desired.
The reduction of aryl ketones provides benzylic alcohols (eq 4)
15
and α-diketones can be converted selectively to α-hydroxy ke-
tones (eq 5).
16
The reduction of the carbonyl group of noncon-
jugated ketones to a methylene unit with zinc and hydrochlo-
ric acid in organic solvents such as ether, acetic anhydride,
or benzene–ethanol proceeds in satisfactory yields with a wide
range of ketones (Clemmensen reaction) (eqs 6–8).
17
The Clem-
mensen reduction of aromatic α-hydroxy ketones gives conjugated
alkenes.
18
Finally, the Clemmensen reduction can also be per-
formed by using zinc and Chlorotrimethylsilane in an aprotic
medium, leading to alkenes (eq 9).
19
This variation has been ex-
ploited for the preparation of alkenes (eq 10)
19b
and has been
used in new cyclization reactions (eqs 11 and 12).
20
Trimethyl-
silyl ethers can be regioselectively prepared by the zinc reduction
of α-chloro ketones in the presence of TMSCl.
21
Mixed pinacol
products have been prepared by using Zn(Cu) as the reducing
agent (eq 13).
22
1. Zn, KCN
(2)
OTBDMS
OH
2. Bu
4
NF
Zn, NiCl
2
cat ))))
EtOH, H
2
O
O
O
(3)
30 °C, 2.5 h
97%
CO
2
H
Ph
O
O
Ph
O
Zn(Hg), HCl
(4)
reflux, toluene
79%
Zn, AcOH
(5)
+
48:52
O
O
O
O
OH
OH
reflux
Zn(Hg), HCl
(6)
H
O
H
Et
2
O
77%
Zn(Hg), HCl
(7)
Cl
Cl
Cl
Cl
O
EtOH, PhH
56%
Zn(Hg), HCl
(8)
CO
2
H
O
CO
2
H
O
O
50%
Zn(Hg), TMSCl
(9)
O
Et
2
O
72%
Avoid Skin Contact with All Reagents
2
ZINC
Si
Si
Cl
Cl
Me Me
Me
Me
Zn(Hg), THF
24 h
(10)
O
O
t
-Bu
t
-Bu
H
Zn, TMSCl
Zn, TMSCl
t
-Bu
H
HO
(11)
2,6-lutidine
66%
without
2,6-lutidine
71%
Zn, TMSCl
O
t
-Bu
t
-Bu
H
HO
(12)
THF
74%
(13)
+
Zn(Cu), H
2
O
O
O
OH
HO
))))
87%
Reduction of Carbon–Oxygen Bonds. Carbon–Oxygen
bonds situated α to an unsaturation are easily reduced with zinc in
an acidic medium. In the case of α-hydroxy ketones, ketones are
obtained in good yields (eq 14).
23
A wide range of allylic or
benzylic ethers, acetates, and alcohols are reduced with zinc
(eq 15).
24,25
The reduction of epoxides can lead to either alcohols
(eq 16)
26
or alkenes.
26b−e
In the presence of catalytic amounts of
Pd
0
and zinc dust, allylic acetates are coupled to give 1,5-dienes
(eq 17).
27
Under similar reaction conditions and in the presence
of an aldehyde, homoallylic alcohols are obtained in satisfactory
yields (eq 18).
27b−d
O
HO
(14)
( )
n
( )
n
O
Zn(Hg), HCl
AcOH
75–78%
(15)
Zn(Hg), HCl
OH
Et
2
O, –15 °C
68–75%
(16)
+
2:1
O
C
5
H
11
H
H
C
5
H
11
C
5
H
11
OH
OH
Zn, TMSCl
CH
2
Cl
2
97%
Zn, Pd
0
OAc
(17)
THF, 25 °C
70%
OAc
(18)
Ph
OH
Zn, Pd
0
+
PhCHO
syn
:anti = 1:1
THF, 25 °C
70%
Reduction of Carbon–Halide Bonds.
Alkyl and alkenyl
halides are readily reduced with zinc under various reaction condi-
tions. The reduction produces, as an intermediate, an organic rad-
ical which can undergo carbon–carbon bond formation (Barbier
reaction)
28
or can be further reduced, usually under acidic con-
ditions. Aliphatic iodides or bromides and benzylic chlorides re-
act readily with Zinc–Acetic Acid, providing the corresponding
hydrocarbon.
29
Although aromatic halides are reduced less eas-
ily, the tribromothiophene 1 is reduced selectively to the bro-
mide 2 (eq 19).
29e,g
Various β-chloro enones are cleanly reduced
to enones with Zinc/Silver Couple in methanol at rt (eq 20).
29f
α
-Dihalo ketones are reduced smoothly, allowing the preparation
of a variety of ketones (eqs 21 and 22).
30
The reductive couplings
of α-bromo ketones, tropylium, and 1,3-dithiolylium cations have
been observed.
31
In the case of 1,3-dihalides, cyclopropanes are
obtained in good yields.
32
If the reduction of the carbon–halide
bond is performed in the presence of an electrophile, a radical
addition often occurs. Thus phenacyl halides can be coupled with
methylenecyclohexanes (eq 23).
33a
Performing the reaction in the
presence of an unsaturated ketone provides the 1,4-adducts. In-
terestingly, the reduction proceeds well in an aqueous medium
supporting a radical mechanism, since zinc organometallics react
instantaneously with water but only very sluggishly with enones
(eq 24).
33b−h
The addition of Chloromethyl Methyl Ether to 1,2-
bis-silyl enol ethers in the presence of zinc leads to ring-enlarged
1,3-cycloalkanediones after acidic treatment.
34
An interesting
three-component reaction has been described (eq 25).
34b
A wide
range of allylic halides undergo Barbier-type addition to carbonyl
groups (eqs 26 and 27).
35,36
The reduction of α,α
′
-dihalo ketones
with a zinc–copper couple in the presence of a diene such as Iso-
prene provides cycloaddition products via a zinc oxyallyl cation.
37
(19)
Zn, AcOH
S
Br
Br
Br
S
Br
(1)
(2)
H
2
O, heat
89–90%
(20)
Zn(Ag), MeOH
O
Cl
O
H
20 °C
65%
(21)
Zn, AcOH
Cl
Cl
O
H
O
H
59%
(22)
Zn, EtOH
O
Cl
Cl
Bu
O
Bu
AcOH, TMEDA
84%
Ph
Br
O
Ph
O
Ph
O
(23)
Zn(Cu), DMSO
+
43%
5%
A list of General Abbreviations appears on the front Endpapers
ZINC
3
Zn(Cu), ))))
+
O
I
O
(24)
EtOH–H
2
O
95%
CN
I
OH
CN
(25)
Zn, heat
+
acetone
98%
(26)
aq NH
4
Cl, 25 °C
75%
+
OH
H
O
Br
OH
OH
Zn, THF
(27)
Br
Zn, THF
+
O
OHC
O
OH
aq NH
4
Cl, 25 °C
92%
Reduction of Carbon–Nitrogen and Carbon–Sulfur Bonds.
Aldimines and oximes are converted to amines, and various hete-
rocycles bearing carbon–nitrogen double bonds are reduced with
zinc under acidic conditions.
38
Cyanamides can be cleanly cleaved
leading to amines,
39a
and the zinc reduction of acylnitriles pro-
vides α-amino ketone derivatives (eq 28).
39b
Aromatic amides
can be reduced with zinc dust to aromatic aldehydes.
39c
Acti-
vated carbon–sulfur bonds α to a carbonyl group
40a,b
and sulfur
ylides
40c,d
can be reduced with zinc.
(28)
Zn, THF
MeO
2
C
CN
O
MeO
2
C
O
NHAc
Ac
2
O
83%
Reduction at Heteroatoms.
2
Nitrogen–oxygen bonds of
oximes,
41
nitro,
42
and nitroso
43
groups are readily reduced by
zinc in acidic medium. Zinc in acetic acid has often been used for
the workup procedure of alkene ozonolysis to afford aldehydes or
ketones.
2
Sulfinates and thiols can be obtained selectively by the
reduction of aromatic sulfonyl chlorides or disulfides.
44
Dehalogenation and Related Reactions.
6c
,
45
Zinc dust is
a very efficient reducing agent for the dehalogenation of 1,2-
dihalides or 1-halo-2-alkoxy derivatives, leading to alkenes.
The reaction allows an access to highly reactive ketenes,
46
alkenes,
47
or alkynes
48
not readily available by standard methods
(eqs 29–31). The reduction of β-alkoxy halides using Zinc–
Graphite proved to be especially interesting when applied to sugar
derivatives (eq 32).
6c,45e,49
The dehalogenation using zinc is such
a straightforward and chemoselective reaction that several pro-
tecting groups have been devised which use this reaction as a
deblocking step.
50
Cl
3
C
Cl
O
Cl
Cl
O
H
(29)
Zn(Cu), ether
+
77–83%
(30)
Zn(Cu), ether
CH
2
I
CH
2
I
>80%
F
3
C
CF
3
F
F
F
3
C
CF
3
(31)
Zn, EtOH
90%
(32)
THF, 10 min
93%
O
I
OMe
MeO
MeO
OMe
CHO
MeO
OMe
OMe
Zn(Ag)/graphite
The Reformatsky Reaction.
4
The insertion of zinc into
α
-halo esters produces zinc ester enolates which react readily
with aldehydes or ketones, leading to aldol products. Histori-
cally, this reaction has been important since it allowed the first
quantitative generation of an ester enolate. However, several mod-
ern synthetic methods for the stereoselective preparation of aldol
products using metal enolates compete favorably with the Refor-
matsky reaction.
51
The nature of the zinc activation
6
has proved
to be important for fast and quantitative zinc insertion. Remark-
ably, the Zn(Ag) couple on graphite reacts with ethyl bromoac-
etate at −78
◦
C within 20 min,
52a
whereas Rieke zinc requires 1
h at 25
◦
C,
52b
as does zinc generated from the reaction of Zinc
Chloride with Lithium under ultrasound irradiation
52c
(eq 33).
52a
Interesting synthetic applications have been reported (eqs 34
and 35).
4,52
4-Bromocrotonate reacts with ketones and Zn(Cu)
with solvent-dependent regioselectivity.
52f
See also Ethyl Bromo-
zincacetate.
CO
2
Et
Br
OEt
O
HO
(33)
1. Zn(Ag)/graphite
THF, –78 °C, 20 min
92%
2. cyclohexenone
(34)
1. Rieke Zn
THF, 25 °C
O
O
O
Br
Br
O
O
O
64%
2. HMPA
Br
CO
2
Et
N
O
O
N
OH
CO
2
Et
O
(35)
Zn, THF
25 °C, ))))
70%
The Simmons–Smith Reaction.
5
,
53
Cut Zn foil readily in-
serts into Diiodomethane providing iodomethylzinc iodide,
53
which cyclopropanates a wide range of alkenes in good yields
(see Ethylzinc Iodide, Iodomethylzinc Iodide, Diethylzinc,
Ethyliodomethylzinc). The in situ generation of iodomethylzinc
Avoid Skin Contact with All Reagents
4
ZINC
iodide is often used. The Zn(Ag) couple has proved to be espe-
cially active for cyclopropanations (eq 36).
53d
40%
Zn(Ag)
OTMS
OTMS
OTMS
OTMS
O
(36)
CH
2
Cl
2
, py
Preparation of Organozinc Reagents.
1
,
3a
The insertion of
zinc into organic halides provides the most general synthesis
of organozinc halides. Primary and secondary organic iodides
react with zinc dust (2–3 equiv) in THF between 20
◦
C and
50
◦
C, leading to organozinc iodides in high yields.
3a,54a−c
Ben-
zylic chlorides and bromides react under even milder conditions,
providing the corresponding benzylic zinc halides without the for-
mation of significant amounts of Wurtz coupling products.
54d−f
Two remarkable properties characterize organozinc reagents:
(i) their high functional group compatibility, which allows the
preparation of polyfunctional organometallic zinc species bearing
almost all common functional groups with the exception of nitro,
azido, or hydroxy functions (see the reagents 3,
54b
4,
54g,h
5,
54i
6,
54j
7,
54k−o
8,
54p
9,
54n,o
10, 11,
54q
and 12–14,
54f
and eq 37); and
(ii) their ability to undergo transmetallation with other metallic
salts, such as copper salts, thus giving polyfunctional copper
reagents which react readily with a wide range of electrophiles
(enones,
54b,r
aldehydes,
54s
alkynes,
54t−v
nitro alkenes,
54w−y
allylic halides,
54b,z
alkynyl halides,
54g
acid chlorides,
54b,54aa
and
alkylidenemalonates
54ab
). Similarly, efficient transmetalations
with Pd
II
salts allow the coupling reactions to be performed
(eq 38).
55,56
Zinc insertion also proceeds well with various
polyfluorinated alkyl iodides
57
and with primary alkyl and benzyl
phosphates and mesylates.
58
Alkenyl and aromatic halides un-
dergo the zinc insertion far less readily and require the use of polar
solvents
59
or highly activated zinc.
60
The use of a sacrificial zinc
electrode offers an interesting alternative.
61
Allylic zinc halides
are formed under very mild conditions and, contrary to other
classes of organozinc reagents, display a high reactivity toward
organic
electrophiles
(comparable
to
organomagnesium
species).
36e−h54a,62
A wide range of synthetic applications of
zinc reagents for the formation of carbon–carbon bonds has been
reported (eqs 39–44).
56,60a,63−66
Diorganomercurials also react
with zinc dust, providing diorganozincs.
67,68
(3)
O
O
ZnI
NC
O
ZnI
(EtO)
2
P
ZnBr
O
(4)
(5)
(6)
(7)
(8)
B
O
O
BrZn
CO
2
Et
CN
ZnBr
Et
Et
OAc
N
O
O
IZn
IZn
SO
2
-t-Bu
N
H
ZnI
IZn
(9)
(10)
(11)
OAc
OAc
ZnCl
ZnBr
Cy
ZnBr
CN
O
(12)
(13)
(14)
(37)
5–45 °C
>85%
FG-RX
+
Zn
FG-RZnX
X = I, Br; R = alkyl, aryl, benzyl, allyl
FG = CO
2
R, enoate, CN, enone, halide, (RCO)
2
N,
(TMS)
2
Si, RNH, NH
2
, RCONH, (RO)
3
Si, (RO)
2
P(O), RS,
RS(O), RSO
2
, PhCOS
THF
(38)
R
2
X
FGR
1
R
2
FGR
1
ZnX
1. CuCN
·
2LiCl
FGR
1
E
2. E
+
Pd
0
(39)
I
I
O
H
1. Zn, THF
2. CuCN
·
2LiCl
74%
3. cyclohexenone, TMSCl
4. allyl bromide
I
CO
2
Et
COCl
CO
2
Et
O
(40)
1. Zn(Cu)
DMA–PhH
87–88%
Pd
0
cat
2.
Br
NC
I
CO
2
Et
NC
CO
2
Et (41)
1. Rieke Zn
Pd
0
cat
82%
2.
I
NHBoc
CO
2
Bn
I
NO
2
NHBoc
CO
2
Bn
O
2
N
(42)
1. Zn(Cu), DMA, PhH
)))), 20–35 °C, 0.5 h
Pd
0
cat
61%
2.
Br
CO
2
Et
(43)
Ph
N
CO
2
Me
Ph
N
O
Ph
Ph
CO
2
Me
1. Zn, THF
80%
2.
A list of General Abbreviations appears on the front Endpapers
ZINC
5
(44)
Br
MgBr
CO
2
Et
CO
2
Et
AcO
88%
AcO
1. Zn, THF
2.
( )
6
3.
First Update
Paul Knochel & Nathalie Grenouillat
Ludwig-Maximilians-Universität, München, Germany
During these last 10 years, the reductive behavior of zinc dust
has been widely used. The insertion of zinc dust into organic
halides is still a common method for the formation of organozinc
reagents. Organozincs have been used for cross-coupling reactions
under milder reaction conditions.
Reduction of Carbon–Oxygen Bonds. Activated C–O bonds
on functionalized compounds can be selectively reduced by zinc.
Thus, by using TiCl
4
, zinc dust leads to the deoxygenation of oxy-
genated derivatives of type (15), affording dibromonaphthalenes
(eq 45).
69
Reduction of functionalized α,β-unsaturated γ,δ-dioxy-
carboxylates with zinc dust in refluxing ethanol provides an
efficient route to substituted allylic alcohols (eq 46).
70
Under
ultrasonic irradiation, γ-enone-lactones are selectively cleaved
by zinc under acidic conditions.
71
A modification of this method
using zinc dust in the presence of ammonium chloride allows a
reductive deacetoxylation of 2-acyloxy-3-keto amides (eq 47).
72
Reduction of alkyl phenyl ketones by zinc and aluminium chloride
in acetonitrile results in a pinacol condensation followed by an in
situ rearrangement, with exclusive migration of the phenyl group
(eq 48).
73
These results contradict a previous report in which aryl
alkyl ketones are condensed to the corresponding alkenes.
74
O
Br
Br
Hex
Hex
15
Br
Br
Hex
Hex
Zn, TiCl
4
THF
reflux, 12 h
70%
(45)
CO
2
Et
O
O
O
O
CO
2
Et
O
O
HO
Zn, EtOH
reflux, 12 h
91%
(46)
N
H
O
O
O
O
N
H
O
O
Zn, ))))
NH
4
Cl, MeOH
20
°
C, 30 min
94%
(47)
O
Zn, AlCl
3
CH
3
CN
O
+
95%
5%
70
°C, 20 h
(48)
Reduction of Carbon–Nitrogen Bonds.
Zinc-mediated
reduction of imines proceeds under mild conditions. A reductive
dimerization leading to useful diamines can be realized (eq 49).
75
Symmetrical and unsymmetrical aromatic diimines undergo a
reductive intramolecular coupling, leading to substituted ethylene-
diamines (eqs 50 and 51).
76
Interestingly, reductive coupling of
aromatic aldoximes and azines to 1,2-diamines is achieved in
one-step using zinc in the presence of MsOH or TiCl
4
(eq 52).
77a
N
-Hydroxy-α-imino esters are reduced to α-amino esters with
Zn-MsOH in high yields (eq 53).
77b
Activation with TMSCl
allows the zinc reductive homocoupling of 2-aryl-2-oxazolinium
salts (eq 54).
78
N
-Bn, S-Bn, and O-Bn derivatives can be
hydrogenolyzed
using
zinc
dust
with
ammonium
for-
mate under microwave irradiation (eq 55).
79
Zinc dust in
refluxing methanol allows a selective monodeprotection of
di-Boc-protected amides, affording the corresponding mono-
Boc-protected amines (eq 56).
80
N
H
Me
Me
NH HN
Me
Me
Me
Me
NH
Me
Me
+
94%
dl
:meso = 1:1
5%
Zn, TMSCl
CH
3
CN
35
°C, 1 h
(49)
Avoid Skin Contact with All Reagents
6
ZINC
N
O
MeO
O
N
MeO
O
O
NH
NH
MeO
MeO
Zn, MsOH
DMF/THF
−
20
°
C
86%
(50)
trans
:cis = 90:10
N
SO
2
N
Me
HN
NH
SO
2
Me
Zn, TMSCl
DMF
20
°
C, 12 h
85%
trans
:cis = 1:2
(51)
N
H
OH
NH
2
H
2
N
N
N
Zn, MsOH
CH
3
CN
20
°
C
67%
Zn, TiCl
4
THF
20
°
C
73%
(52)
NHBoc
Me
CONH
CO
2
Me
Ph
85%
2. (Boc)
2
O, aq NaHCO
3
2
N
Me
CONH
HO
CO
2
Me
Ph
2
1. Zn, MsOH, THF, 25
°
C
(53)
N
O
Cl
I
N
O
Cl
N
O
Cl
Zn, TMSCl
DMF
20
°
C, 16 h
76%
(54)
H
3
C
CH
3
NHBn
H
3
C
CH
3
NH
2
7
7
Zn, HCO
2
NH
4
MeOH, ))))
20
°
C, 3 h
90%
(55)
TBDMSO
OMe
O
N(Boc)
2
TBDMSO
OMe
O
NHBoc
Zn, MeOH
reflux, 24 h
87%
(56)
Reduction of Carbon–Sulfur Bonds. 2-Thioxo-4-thiazolidi-
nones can be converted to 4-thiazolidinones by utilizing excess
zinc dust in acetic acid (eq 57).
81
Residual lead present in the
commercial source of zinc dust is essential for the success of the
reaction.
82
S
NH
O
S
HO
S
NH
O
HO
Zn, ε Pb
AcOH
(57)
reflux
90%
Reduction of Nitrogen–Nitrogen and Nitrogen–Oxygen
Bonds. In the presence of ammonium chloride and ammonium
formate, the reduction of N–O functions and N–N functions with
zinc dust proceeds with good yields under very mild conditions.
Many functional groups, which are known to be reducible moieties
(OH, OCH
3
, CH
3
, CO
2
H, COCH
3
, SO
3
Na, halogens, etc.) are
tolerated during this cleavage step. Thus, alkyl or aryl azides and
acyl azides are reduced to the corresponding amines and amides
(eqs 58–60).
83,84
Azobenzenes are cleaved to their corresponding
anilines in a few minutes (eqs 61 and 62).
85
Heteroaromatic
N
-oxides are reduced to the corresponding pyridines through an
efficient deoxygenation (eq 63).
86
Reduction of γ-nitro carbonyl
compounds produces nitrones without isolation of the intermedi-
ate hydroxylamines (eq 64).
87
O
N
3
O
NH
2
Zn, NH
4
Cl
EtOH/H
2
O
reflux, 10 min
96%
(58)
A list of General Abbreviations appears on the front Endpapers
ZINC
7
N
3
O
NH
2
O
Zn, NH
4
Cl
EtOH/H
2
O
20
°C, 2 h
94%
(59)
N
3
N
O
CH(SEt)
2
NH
2
N
O
CH(SEt)
2
Zn, HCO
2
NH
4
MeOH
20
°
C, 25 min
90%
(60)
N N
H
3
C
H
2
N
H
3
C
NH
2
H
3
C
H
2
N
H
2
N
H
3
C
Zn, HCO
2
NH
4
MeOH
20
°
C, 12 min
90%
+
(61)
N N
N
HO
2
C
NH
2
N
H
2
N
HO
2
C
Zn, NH
4
Cl
MeOH
20
°
C, 20 min
80%
+
(62)
N
CO
2
Me
O
N
CO
2
Me
Zn, HCO
2
NH
4
MeOH
reflux, 4 h
78%
(63)
NO
2
EtO
2
C
EtO
2
C
O
NH
EtO
2
C
EtO
2
C
O
HO
N
EtO
2
C
EtO
2
C
O
(64)
Zn, aq NH
4
Cl
THF
0
°
C, 5 h
77%
Under acidic conditions, pyridazines are converted to pyrroles
through a ring contraction proceeding via a 1,4-dihydro-1,2-
diazine (eq 65).
88
Reduction with zinc of a nitroarene possessing a
cyano group leads to an interesting cyclization reaction (eq 66).
89
N N
MeO
2
C
CO
2
Me
OBn
N NH
MeO
2
C
CO
2
Me
OBn
N
H
MeO
2
C
CO
2
Me
OBn
Zn, TFA
25
°
C, 1 h
(65)
N
CN
O
2
N
N
NH
(66)
Zn, aq HCl
aq EtOH
78
°
C
65%
A zinc-mediated chemoselective reduction of nitroarenes to
amines and azobenzenes to hydrazobenzenes can be performed
in ionic liquids (eqs 67 and 68).
90
A selective reduction of
nitroarenes is also reported by using zinc in near-critical water
(250
◦
C).
91
Interestingly, under microwave irradiation, nitro and
azido arenes are reduced to N-arylformamides by using ammo-
nium formate (eq 69).
84
Zinc–hydrazinium monoformate is an
efficient system to reduce aliphatic and aromatic nitro compounds
to the corresponding amines (eq 70).
92
Zinc dust combined with
nickel chloride hexahydrate allows the selective reduction of
alkyl, aryl, aroyl and arylsulfonyl azides to amines (eq 71).
93
Interestingly, nitro substituted aromatic azides are selectively
reduced to their corresponding anilines without any further
reduction of the nitro group (eq 72).
NO
2
HO
NH
2
HO
20
°
C, 8 h
77%
(67)
Zn, NH
4
Cl
[bmim][PF
6
]/H
2
O
[bmim][PF
6
] = 1-butyl-3-methylimidazolium
hexafluorophosphate
N N
Me
Me
N
H
N
H
Me
Me
20
°
C, 35 min
94%
(68)
Zn, HCO
2
NH
4
[bmim][BF
4
]/H
2
O
[bmim][BF
4
] = 1-butyl-3-methylimidazolium tetrafluoroborate
Avoid Skin Contact with All Reagents
8
ZINC
NO
2
Cl
N
3
Cl
NHCHO
Cl
Zn, HCO
2
NH
4
)))), 300W
20
°
C, 3 min
80%
Zn, HCO
2
NH
4
)))), 300W
20
°
C, 2.5 min
90%
(69)
NO
2
NH
2
Zn, H
2
N-NH
2
·
HCO
2
H
MeOH
20
°
C, 2 min
94%
(70)
S
O
O
N
3
Zn-NiCl
2
·
6H
2
O
THF
S
O
O
NH
2
20
°
C, 2 h
85%
(71)
N
3
O
2
N
Zn-NiCl
2
⋅
6H
2
O
THF
NH
2
O
2
N
20
°
C, 2.5 h
80%
(72)
Reduction of Sulfur–Sulfur and Sulfur–Oxygen Bonds. A
Zn/AlCl
3
system in aqueous media is a convenient method for
the reduction of alkyl and aryl disulfides to zinc thiolates, which
react with alkyl or aryl halides and alkyl tosylates providing the
corresponding thioethers (eqs 73 and 74).
94
Unsymmetrical aryl
sulfides are also prepared by cleavage of the S–S bond by zinc and
nickel bromide/bipyridine (bpy) followed by trapping with an aryl
iodide (eq 75).
95
Zinc with dichlorodimethylsilane in dimethyl-
acetamide allows a nonaqueous reduction of aromatic sulfonyl
chlorides affording various thiols (eq 76).
96
S
S
Br
Bu
S Bu
(73)
+
Zn, AlCl
3
DMF/H
2
O
65
°
C, 17 h
95%
Bu
S
S Bu
OTs
S Bu
(74)
+
Zn, AlCl
3
CH
3
CN/H
2
O
65
°
C, 6 h
90%
Dehalogenation and Related Reactions. Zinc is well known
to promote dehalogenation reactions. Thus, olefins are obtained in
good yield by the reaction of β-((trimethylsilyl)oxy)alkyl iodides
with zinc dust in THF (eq 77).
97
Likewise, zinc-induced elimina-
tion of a bromomesylate thymidine derivative affords the desired
elimination product (eq 78).
98
p
-Toluenesulfonates of chiral 2,
3-epoxy alcohols are converted into allylic alcohols by a two-step
reaction (iodination and reduction) (eq 79).
99
A rearrangement
of the iodomesylate derivative (16) produces an interesting inter-
mediate of (+)-8-deoxyvernolepin (eq 80).
100
The reductive ring
opening of bromopyranose sugars, first developed by Vasella,
101
allows a zinc dust reduction of iodoglycosides under sonication
102
and furnishes highly functionalized unsaturated carbohydrates
(eq 81).
102d,e,f
A chemoselective deprotection of prenyl carba-
mates was performed in a one-pot procedure (iodoetherification
and reduction) (eq 82).
103
A mild cleavage of allyl protection is af-
forded using perfluoroalkylation and subsequent elimination with
zinc dust (eq 83).
104
Me
S
S Me
I
S
Me
(75)
+
NiBr
2
-bpy (10 mol
%)
Zn, DMF
110
°
C, 48 h
81%
SO
2
Cl
H
3
CS
SH
H
3
CS
(76)
Zn, Me
2
SiCl
2
1,2-DCE, DMA
75
°
C, 1.5 h
97 %
Me
3
SiO
I
PhO
PhO
Zn, THF
reflux, 1 h
93%
(77)
O
N
Br
MsO
HN
O
O
BzO
O
N
HN
O
O
BzO
Zn, AcOH cat.
EtOAc, MeOH
20
°
C, 3.5 h
97%
(78)
OTs
O
O
O
H
H
H
O
O
H
OH
H
1. KI, DMF, 55
°
C, 1.5 h
2. Zn. NH
4
Cl, 0
°
C, 20 min
86%
96% de
(79)
A list of General Abbreviations appears on the front Endpapers
ZINC
9
O
O
O
H
O
MsO
I
16
O
O
O
H
O
MsO
O
O
O
H
O
O
O
O
H
Zn, NaI, aq DME
(80)
reflux
78%
O
OBn
BnO
OBn
OMe
I
Br
BnO
BnO
BnO
NH Bn
(81)
1. Zn dust (excess), ))))
THF, BnNH
2
73%
2.
85:15
83%
2. Zn, 30 min
MeS
CO
2
Me
HN
O
MeS
CO
2
Me
NH
2
1. I
2
, MeOH, rt, 7 h
(82)
O
O
O
SPh
AllO
O
O
O
SPh
O
I
F(F
2
C)
6
O
O
O
SPh
HO
I(CF
2
)
6
F, Na
2
SO
4
NaHCO
3
CH
3
CN/H
2
O
20
°
C, 30 min
98%
(83)
Zn, NH
4
Cl
EtOH
reflux, 15 min
90%
1,1-Dibromo-1-alkenes are reduced to the corresponding
monobromoalkenes with zinc in the presence of NH
4
Cl,
105
but
are efficiently converted to methyl ketones by using zinc metal
in near-critical water.
106
This reductive process was applied to
homologation of aldehydes (eq 84). Oxyallyl cations are easily
generated by zinc reduction of α,α
′
-diiodoketones under sono-
chemical conditions. Their reaction with dienes leads to the
cycloadducts in high yields (eq 85).
107
A synthesis of octaflu-
oro[2.2]paracyclophane (AF4) based on the generation of a
p
-xylylene intermediate with zinc in DMA at 100
◦
C has been
reported (eq 86).
108
Reductive defluorination of pentafluorobenzoic acid proceeds
with high regioselectivity para to the carboxy group using zinc in
ammonia (eq 87).
109
O
Cl
Cl
Br
Br
CH
2
Cl
2
Cl
O
Zn, H
2
O
CBr
4
, PPh
3
78%
(84)
275
°
C, 4 h
I
O
I
O
O
Zn
II
I
, I
O
Zn
O
O
+
Zn, )))), CH
3
CN
−
44
°
C, 15 min
90%
reduction
[4+3]
oxyallyl cation
(85)
cis
:trans = 100:0
endo
:exo = 91:1
ClF
2
C
CF
2
Cl
F
F
F
F
F
F
F
F
F
F
F
F
F
F
Zn, DMA
AF4 : 60%
6%
(86)
100
°
C, 3 h
+
CO
2
H
F
F
F
F
F
CO
2
H
F
F
H
F
F
Zn, NH
3
−
45
°
C, 3.5 h
90%
(87)
Zinc-mediated Cross-coupling Reactions.
Zinc dust pro-
motes, under mild conditions, the acylation of alcohols,
110
amines,
111
thiols,
112
ylides,
113
the synthesis of carbamates,
114
and
Friedel-Crafts acylation of electron rich arenes (eqs 88–92).
115
Under microwave irradiation, the Friedel-Crafts acylation can be
performed in solvent-free conditions and not only on activated
arenes but also on benzene, toluene, or chlorobenzene.
116
It is
presumed that the electrophilic character of the acyl chloride is
enhanced by the zinc which undergoes nucleophilic displacement.
The recovery of zinc and its reuse make these general meth-
ods more economic. Zinc metal allows also acylation and sul-
fonation of pyrrole and its derivatives in high regioselectivity
Avoid Skin Contact with All Reagents
10
ZINC
(no N-acylated products were obtained under these conditions)
(eq 93).
117
Symmetrical thiosulfonic S-esters are obtained in good
yield by the reduction of sulfonyl chlorides in the presence of
acetyl chloride (eq 94).
118
N
O
O
Cl
OH
N
O
O
O
+
Zn, benzene
20
°
C, 15 min
94%
(88)
FmocHN
Cl
O
Ph
−
Cl
+
H
3
N
OMe
O
FmocHN
N
H
O
Ph
OMe
O
+
Zn, THF
20
°
C, 10 min
90%
(89)
Cl
O
Ph
SH
S
O
Ph
+
Zn, toluene
20
°
C, 15 min
91%
(90)
BnO
Cl
O
S
N
H
2
N
S
N
N
H
BnO
O
+
Zn, benzene
20
°
C, 8 min
93%
(91)
OMe
Me
Cl
Cl
COCl
Cl
Cl
O
OMe
Me
+
Zn, toluene
70
°
C, 8 h
89%
(92)
N
H
Cl
SO
2
Cl
N
H
S
O
2
Cl
+
Zn, toluene
20
°
C, 1 h
85%
(93)
(94)
S
O
Cl
O
Zn, TMSCl
1,2-diobromoethane
CH
3
COCl, EtOAc, 20
°
C
90%
S
O
S
O
Wittig Reaction and Simmons–Smith Reactions.
Resid-
ual lead found in commercial zinc dust has a dramatic ef-
fect on the Simmons–Smith reaction (addition of TMSCl is
necessary to suppress this negative effect), whereas it has a
positive catalytic effect on Wittig-type olefination with the
CH
2
I
2
, Zn, TiCl
4
system.
119
The reaction of aldoses with di-
bromomethyltriphenylphosphonium bromide, in the presence
of zinc, gives the corresponding unsaturated olefination prod-
ucts with good yields (eq 95).
120
A variety of organoz-
inc carbenoids can be generated by the reaction of acetals,
ketals,
121a
ortho
formates,
121b
carbonyl compounds,
121c,d
or
N
-diethoxymethyl amides
121e
with metallic zinc in the pres-
ence of a triorganosilyl chloride. Organozinc carbenoids undergo
several useful reactions including direct deoxygenation to alkenes,
cyclopropanation, and dicarbonyl coupling (eqs 96 and 97).
121
O
HO
OH
TrO
OH
HO
TrO
Br
Br
(95)
Ph
3
PCHBr
2
, Br
Zn, dioxane
reflux, 40 min
90%
O
O
13
reflux
86%
13
(96)
Zn(Hg), Me
3
SiCl
ZnCl
2
, Et
2
O
MeO
CHO
OAc
Si
Si
Cl
Cl
OAc
MeO
H
Zn, Et
2
O, reflux
69%
cis:trans
= 6.4:1
+
(97)
Preparation of Organozinc Reagents.
A broad range of
functionalized zinc organometallics have been prepared by us-
A list of General Abbreviations appears on the front Endpapers
ZINC
11
ing the direct insertion of zinc into organic halides.
122
In most
cases, activation of zinc dust is necessary, and the most com-
mon method remains the activation with 1,2-dibromoethane and
TMSCl in THF.
54b
In some cases, only trimethylsilyl chloride
has been used to prepare activated zinc. For solubility reasons,
it is sometimes necessary to use a dipolar aprotic solvent such
as DMF, DMSO, or DMAC instead of THF. Thus, chiral
β
-carbamate- and amido-alkylzincs bearing an acidic N–H group
are prepared under mild conditions (17,
123a
18,
123b
and 19,
123c
).
This activation allows the preparation of serine-derived organo-
zinc reagents as developed by Jackson (20,
124a,b
21,
124c
22,
124d
23,
124d
24,
124e,f
25,
124g,h,i
26,
124g,h,i
27,
124j
28,
124k
29,
124k
).
Various nitrogen-containing iodo- or bromo-substituted hetero-
cycles were converted to their corresponding zincated hetero-
cycles derivatives (30–33).
125,126
This reaction was extended to
the preparation of zinc organometallics derived from nucleosides
and nucleic bases (34 and 35).
126,127
The reaction of these new
zinc reagents with various electrophiles under palladium(0) or
copper(I) catalysis allows the preparation of a broad range of poly-
functional nitrogen-containing heterocycles.
Me
ZnI
NHBoc
17
X
NH
ZnI
O
18, X = O
19, X = C
IZn
NHBoc
CO
2
R
20, n = 1, R = Bn
21, n = 1, R = Me
22, n = 2, R = Bn
23, n = 3, R = Bn
n
Z
N
O
O
IZn
24
IZn
NHR
2
CO
2
R
1
25, n = 1, R
1
= Me, R
2
= Boc
26, n = 2, R
1
= Me, R
2
= Boc
27, n = 1, R
1
= Me, R
2
= TFA
28, n = 1, R
1
= Bn, R
2
= TFA
29, n = 1, R
1
= Bn, R
2
= Boc
n
N
ZnI
30
N
N
NC
NC
ZnBr
Me
31
N
S
ZnBr
32
N
Cl
ZnI
33
N
N
O
O
Bn
Bn
ZnI
34
N
N
N
N
O
OAc
OAc
AcO
ZnI
35
An efficient procedure using a catalytic amount of I
2
in a
polar aprotic solvent for activation of zinc allows the preparation
of alkylzinc compounds starting from unactivated alkyl bromides
and chlorides (eq 98).
128
The use of a sacrificial zinc anode
offers an interesting alternative. Hence, in the presence of cat-
alytic amounts of NiBr
2
bpy catalyst, 2,5-dibromo-3-substituted
thiophenes are electrochemically converted to their correspond-
ing thienylzinc species with good regioselectivity (eq 99).
129
Aryl-
zinc compounds are also efficiently prepared by electroreduction
of aryl chlorides and bromides with a zinc anode in the pres-
ence of cobalt bromide or a cobalt chloride—pyridine complex
in DMF or acetonitrile (eqs 100 and 101).
130
Arylzincs undergo
cross-couplings with aromatic halides or activated olefins.
131
An
alternative to this electrochemical process uses allyl chloride and
zinc dust activated by traces of an acid as a reducing agent.
132
Various aromatic ketones are obtained by trapping these organo-
zinc derivatives with carboxylic acid anhydrides (eq 102).
132c
CN
Cl
EtO
O
CN
Cl
2
Ni(PPh
3
)
2
3
EtO
Br
O
EtO
ZnBr
O
Zn, I
2
DMA
3
3
20
°
C, 1 h
97% overall
(98)
80
°
C, 3 h
S
Hex
Br
Br
S
Hex
Br
BrZn
I
2
S
Hex
Br
I
(99)
Zn anode
e, NiBr
2
bpy
ZnBr
2
76%
100% 5-substitued
DMF, −10
°
C
Cl
H
3
CO
2
S
ZnCl
H
3
CO
2
S
I
2
I
H
3
CO
2
S
(100)
Zn anode
e, CoCl
2
ZnBr
2
90%
DMF/pyridine
20
°
C
Avoid Skin Contact with All Reagents
12
ZINC
Br
F
3
C
ZnCl
F
3
C
I
2
I
F
3
C
(101)
Zn anode
e, CoBr
2
ZnBr
2
90%
Acetonitrile, 20
°
C
Br
MeO
CoBr
2
Zn
ZnBr
MeO
O
Me
O
MeO
Me
O
1. Allyl chloride
acetonitrile, TFA, 20 °C
2.
+
71%
(102)
2
83%
Reformatsky Reaction and Barbier-type Reactions.
The
Reformatsky reaction can be carried out in aqueous media by addi-
tion of salts (NH
4
Cl, CaCl
2
, Mg(ClO
4
)
2
, BF
3
·OEt
2
) (eq 103).
133
Barbier-type zinc-mediated reactions have been widely devel-
oped, particularly the allylation and propargylation of carbonyl
compounds.
134
Such reactions proceed well in saturated aque-
ous ammonium chloride solution with or without addition of or-
ganic solvent and also in liquid ammonia.
135
Thus, intramolecular
carbonyl allylations of cyclic β-keto ester derivatives in aqueous
media allows a ring expansion of one or two carbons (eqs 104
and 105).
136
The same ring expansion of various α-halomethyl
cyclic β-keto esters was performed in a mixture of tert-amyl
alcohol and water with good yield (eq 106).
137
With chiral alde-
hydes or with the enantiopure 2-sulfinylallyl chloride the addition
is highly stereoselective (eqs 107–109).
138,139
Similar alkylation
on sulfonamines provides the corresponding homoallylic sulfon-
amides (eq 110)
140
and difluoroacetyltrialkylsilane reacts with
various allyl bromides affording homoallylic alcohols (eq 111).
141
Aldimines and ketimines are efficiently allylated by commercial
zinc dust without any activation (eq 112).
142
H
O
CO
2
Et
Br
OH
CO
2
Et
(103)
Zn, BF
3
·OEt
2
H
2
O /THF
+
20
°
C, 2 h
92%
O
CO
2
Et
Br
O
CO
2
Et
(104)
1. Zn, aq HCl/THF
20
°
C, 20 h
2. DBU, THF, 2 h, rt
50%
O
CO
2
Et
Br
O
CO
2
Et
O
CO
2
Et
Zn, aq NH
4
Cl
60%
overall
(105)
20
°
C, 5 h
DBU
THF, 20
°
C
O
I
CO
2
Me
O
CO
2
Me
Zn
tert
-amyl alcohol/H
2
O
20
°
C, 3 h
87%
(106)
O
O
CHO
Br
O
O
OH
(107)
+
Zn, aq NH
4
Cl
20
°
C, 8 h
75%
syn
:anti = 3:97
H
O
NBn
2
Br
OH
NBn
2
(108)
+
Zn, THF/NH
4
Cl
0
°
C, 30 min
95%
dr = 7:1
Cl
S
p
-Tol
O
CHO
S
p
-Tol
O
OH
(109)
+
Zn, NaI
aq NH
4
I/THF
0
°
C
80%
dr = 6:1
A list of General Abbreviations appears on the front Endpapers
ZINC
13
Ph
N
SO
2
Ph
H
Ph
Br
Ph
NHSO
2
Ph
Ph
+
20
°
C, 2 h
87%
Zn, aq NH
4
Cl
(110)
Br
HF
2
C
SiEt
3
O
Et
3
Si
OH
CF
2
H
(111)
+
Zn, aq NH
4
Cl
THF
20
°
C, 30 min
88%
Br
N
Me
Ph
Bn
BnHN
Me
Ph
(112)
+
1. Zn, THF
20
°
C, 2 h
2. aq NaHCO
3
98%
Allylic zinc halides add easily to acid chlorides providing β,γ-
unsaturated alcohols, or in the presence of TMSCl promoting
a gem-bisallylation (eq 113).
143
Likewise, allylic or benzylic
bromides add to alkyl and aryl sulfonyl chlorides providing
β
,γ
-unsaturated sulfones in ether or aqueous media (eq 114).
144
An efficient addition to α-amidoalkylphenyl sulfones is also
reported (eq 115).
145
Cl
Cl
O
HO
Ph
(113)
+
Zn, TMSCl
THF
50
°
C, 3 h
92%
Br
(114)
+
Zn, Et
2
O
20
°
C, 3 h
81%
S
O
O
Cl
S
O
O
Br
Bn
O
N
H
Ph
O
SO
2
Ph
Bn
O
N
H
Ph
O
(115)
+
Zn, THF
20
°
C, 1.5 h
99%
Related
Reagents.
Dibromomethane–Zinc–Titanium(IV)
Chloride; Dichlorobis(cyclopentadienyl)zirconium–Zinc–Dibro-
momethane;
Diiodomethane–Zinc–Titanium(IV)
Chloride;
Molybdenum(V) Chloride–Zinc; Niobium(V) Chloride–Zinc;
Phosphorus(III) Bromide–Copper(I) Bromide–Zinc; Potassium
Hexachloroosmate(IV)–Zinc;
Titanium(IV)
Chloride–Zinc;
Zinc–Acetic Acid; Zinc Amalgam; Zinc–Copper(II) Acetate–
Silver Nitrate; Zinc–Copper(I) Chloride; Zinc/Copper Couple;
Zinc–1,2-Dibromoethane;
Zinc–Dimethylformamide;
Zinc–
Graphite; Zinc/Nickel Couple; Zinc/Silver Couple; Zinc–
Zinc Chloride.
1.
(a) Nützel, K., Methoden Org. Chem. (Honben-Weyl) 1973, 13/2, 552.
(b) Sheverdina, N. I.; Kocheshkov, K. A. In Methods of Elemento-
Organic Chemistry
; Nesmeyanov, A. N.; Kocheshkov, K. A., Ed.;
North-Holland: Amsterdam, 1967; Vol. 3. (c) Crompton, T. R. Analysis
of Organoaluminium and Organozinc Compounds
; Pergamon: Oxford,
1968.
2.
(a) Martin, E. L., Org. React. 1942, 1, 155. (b) Staschewski, D., Angew.
Chem. 1959
, 71, 726. (c) Buchanan, J. G. S. C.; Woodgate, P. D., Q.
Rev., Chem. Soc. 1969
, 23, 522. (d) Vedejs, E., Org. React. 1975, 22,
401. (e) Muth, M.; Sauerbier, M., Methoden Org. Chem. (Honben-Weyl)
1981, 4/1c, 709.
3.
(a) Knochel, P., Chem. Rev. 1993, 93, 217. (b) Elschenbroich, C.;
Salzer, A. Organometallics: A Concise Introduction; VCH: Weinheim,
1989. Carruthers, W. In Comprehensive Organometallic Chemistry;
Wilkinson, G., Ed.; Pergamon: Oxford, 1982; Vol. 7, p 661.
4.
(a) Gaudemar, M., Organomet. Chem. Rev. (A) 1972, 8, 183. (b) Rathke,
M. W., Org. React. 1975, 22, 423. (c) Fürstner, A., Synthesis 1989, 571.
5.
(a) Simmons, H. E.; Cairns, T. L.; Vladuchick, A.; Hoiness, C. M., Org.
React. 1972
, 20, 1. (b) Furukawa, J.; Kawabata, N., Adv. Organomet.
Chem. 1974
, 12, 83. (c) Zeller, K.-P.; Gugel, H., Methoden Org. Chem.
(Houben-Weyl) 1989
, EXIXb, 195.
6.
(a) Erdik, E., Tetrahedron 1987, 43, 2203. (b) Rieke, R. D., Science
1989, 246, 1260. (c) Fürstner, A., Angew. Chem., Int. Ed. Engl. 1993,
32
, 164.
7.
(a) Morris, S. G.; Herb, S. F.; Magidman, P.; Luddy, F. E., J. Am. Oil
Chem. Soc. 1972
, 49, 92. (b) Sondengam, B. L.; Charles, G.; Akam, T.
M., Tetrahedron Lett. 1980, 21, 1069.
8.
(a) Aerssens, M. H. P. J.; van der Heiden, R.; Heus, M.; Brandsma, L.,
Synth. Commun. 1990
, 20, 3421. (b) Solladié, G.; Stone, G. B.; Andrés,
J.-M.; Urbano, A., Tetrahedron Lett. 1993, 34, 2835.
9.
(a) Näf, F.; Decorzant, R.; Thommen, W.; Willhalm, B.; Ohloff, G.,
Helv. Chim. Acta 1975
, 58, 1016. (b) Oppolzer, W.; Fehr, C.; Warneke,
J., Helv. Chim. Acta 1977, 60, 48. (c) Winter, M.; Näf, F.; Furrer, A.;
Pickenhagen, W.; Giersch, W.; Meister, A.; Willhalm, B.; Thommen,
W.; Ohloff, G., Helv. Chim. Acta 1979, 62, 135.
10.
(a) Boland, W.; Schroer, N.; Sieler, C.; Feigel, M., Helv. Chim. Acta
1987, 70, 1025. (b) Avignon-Tropis, M.; Pougny, J. R., Tetrahedron
Lett. 1989
, 30, 4951. (c) Chou, W.-N.; Clark, D. L.; White, J. B.,
Tetrahedron Lett. 1991
, 32, 299.
11.
(a) Biollaz, M.; Haefliger, W.; Verlade, E.; Crabbé, P.; Fried,
J. H., J. Chem. Soc., Chem. Commun. 1971, 1322. (b) Maurer, H.; Hopf,
H., Angew. Chem., Int. Ed. Engl. 1976, 15, 628. (c) Kloster-Jensen, E.;
Wirz, J., Helv. Chim. Acta 1975, 58, 162.
12.
(a) Davis, B. R.; Woodgate, P. D., J. Chem. Soc. (C) 1966, 2006.
(b) Davis, B. R.; Woodgate, P. D., J. Chem. Soc. 1965, 5943. (c) Toda,
F.; Iida, K., Chem. Lett. 1976, 695.
13.
(a) Chaykovsky, M.; Lin, M. H.; Rosowsky, A., J. Org. Chem. 1972, 37,
2018. (b) Marker, R. E.; Crooks, H. M., Jr.; Wagner, R. B.; Wittbecker,
E. L., J. Am. Chem. Soc. 1942, 64, 2089.
14.
Petrier, C.; Luche, J.-L., Tetrahedron Lett. 1987, 28, 2347, 2351.
15.
(a) Weeks, D. P.; Cella, J., J. Org. Chem. 1969, 34, 3713. (b) Dickinson,
J. D.; Eaborn, C., J. Chem. Soc. 1959, 2337. (c) Wiselogle, F. Y.;
Sonneborn, H., Org. Synth., Coll. Vol. 1941, 1, 90. (d) Gardner, J. H.;
Naylor, C. A., Org. Synth., Coll. Vol. 1943, 2, 526.
Avoid Skin Contact with All Reagents
14
ZINC
16.
(a) Coulombeau, C.; Rassat, A., Bull. Soc. Chem. Fr. 1970, 1199.
(b) Rosnati, V., Tetrahedron Lett. 1992, 33, 4791.
17.
(a) Yamamura, S.; Toda, M.; Hirata, Y., Org. Synth., Coll. Vol. 1988,
6
, 289. (b) Marchand, A. P.; Weimar, W. R., Jr., J. Org. Chem. 1969,
34
, 1109. (c) Winternitz, F.; Mousseron, M., Bull. Soc. Chem. Fr. 1949,
16
, 713. (d) Nesty, G. A.; Marvel, C. S., J. Am. Chem. Soc. 1937,
59
, 2662. (e) Minabe, M.; Yoshida, M.; Fujimoto, M.; Suzuki, K.,
J. Org. Chem. 1976
, 41, 1935. (f) Mayer, R.; Bürger, H.; Matauschek,
J. Prakt. Chem. 1961
, 285, 261. (g) Borden, W. T.; Ravindranathan, T.,
J. Org. Chem. 1971
, 36, 4125. (h) Martin, E. L., Org. Synth., Coll. Vol.
1943, 2, 499. (i) Read, R. R.; Wood, J., Org. Synth., Coll. Vol. 1955, 3,
444. (j) Schwarz, R.; Hering, H., Org. Synth., Coll. Vol. 1963, 4, 203.
(k) Burdon, J.; Price, R. C., J. Chem. Soc., Chem. Commun. 1986, 893.
(l) Di Vona, M. L.; Floris, B.; Luchetti, L.; Rosnati, V., Tetrahedron
Lett. 1990
, 31, 6081. (m) Frank, R. L.; Smith, P. V., Org. Synth., Coll.
Vol. 1955
, 3, 410.
18.
Shriner, R. L.; Berger, A., Org. Synth., Coll. Vol. 1955, 3, 786.
19.
(a) Motherwell, W. B., J. Chem. Soc., Chem. Commun. 1973, 935.
(b) Afonso, C. A. M.; Motherwell, W. B.; O’Shea, D. M.; Roberts, L.
R., Tetrahedron Lett. 1992, 33, 3899. (c) Boudjouk, P.; So, J. H., Synth.
Commun. 1986
, 16, 775.
20.
(a) Corey, E. J.; Pyne, S. G., Tetrahedron Lett. 1983, 24, 2821.
(b) Shono, T.; Hamaguchi, H.; Nishiguchi, I.; Sasaki, M.; Miyamoto,
T.; Miyamoto, M.; Fujita, S., Chem. Lett. 1981, 1217.
21.
Rubottom, G. M.; Mott, R. C.; Krueger, D. S., Synth. Commun. 1977,
7
, 327.
22.
Delair, P.; Luche, J.-L., J. Chem. Soc., Chem. Commun. 1989, 398.
23.
Cope, A. C.; Barthel, J. W.; Smith, R. D., Org. Synth., Coll. Vol. 1963,
4
, 218.
24.
(a) Elphimoff-Felkin, I.; Sarda, P., Org. Synth., Coll. Vol. 1988, 6, 769.
(b) Elphimoff-Felkin, I.; Sarda, P., Tetrahedron 1977, 33, 511.
25.
Prostenik, M.; Butula, I., Chem. Ber. 1977, 110, 2106.
26.
Vankar, Y. D.; Arya, P. S.; Rao, C. T., Synth. Commun. 1983, 13, 869.
27.
(a) Sasaoka, S.; Yamamoto, T.; Kinoshita, H.; Inomata, K.; Kotake,
H., Chem. Lett. 1985, 315. (b) Masuyama, Y.; Nimura, Y.; Kurusu, Y.,
Tetrahedron Lett. 1991
, 32, 225.
28.
Blomberg, C.; Hartog, F. A., Synthesis 1977, 18.
29.
(a) Levene, P. A., Org. Synth., Coll. Vol. 1943, 2, 320. (b) Boerhorst, E.;
Klumpp, G. W., Recl. Trav. Chim. Pays-Bas 1976, 95, 50. (c) Olieman,
C.; Maat, L.; Beyerman, H. C., Recl. Trav. Chim. Pays-Bas 1976, 95,
189. (d) Hassner, A.; Hoblitt, R. P.; Heathcock, C.; Kropp, J. E.; Lorber,
M., J. Am. Chem. Soc. 1970, 92, 1326. (e) Gronowitz, S.; Raznikiewicz,
T., Org. Synth., Coll. Vol. 1973, 5, 149.
30.
(a) Jeffs, P. W.; Molina, G., J. Chem. Soc., Chem. Commun. 1973, 3.
(b) Eck, C. R.; Mills, R. W.; Money, T., J. Chem. Soc., Chem. Commun.
1973, 911. (c) Danheiser, R. L.; Savariar, S., Tetrahedron Lett. 1987,
28
, 3299. (d) Danheiser, R. L.; Savariar, S.; Cha, D. D., Org. Synth.
1989, 68, 32.
31.
(a) Doering, W. E.; Knox, L. H., J. Am. Chem. Soc. 1957, 79, 352.
(b) Kruger, A.; Wudl, F., J. Org. Chem. 1977, 42, 2778.
32.
(a) Corbin, T. F.; Hahn, R. C.; Shechter, H., Org. Synth., Coll. Vol. 1973,
5
, 328. (b) Giusti, G.; Morales, C., Bull. Soc. Chem. Fr. 1973, 382.
33.
(a) Luche, J.-L.; Allavena, C., Tetrahedron Lett. 1988, 29, 5369. (b)
Luche, J.-L.; Allavena, C.; Petrier, C.; Dupuy, C., Tetrahedron Lett.
1988, 29, 5373. (c) Dupuy, C.; Petrier, C.; Sarandeses, L. A.; Luche, J.-
L., Synth. Commun. 1991, 21, 643. (d) Sarandeses, L. A.; Mourino, A.;
Luche, J.-L., J. Chem. Soc., Chem. Commun. 1991, 818. (e) Sarandeses,
L. A.; Mourino, A.; Luche, J.-L., J. Chem. Soc., Chem. Commun. 1992,
798. (f) Einhorn, C.; Einhorn, J.; Luche, J.-L., Synthesis 1989, 787. (g)
Petrier, C.; Dupuy, C.; Luche, J. L., Tetrahedron Lett. 1986, 27, 3149.
(h) Kong, K.-C.; Cheng, C.-H., Organometallics 1992, 11, 1972.
34.
(a) Nishiguchi, I.; Hirashima, T.; Shono, T.; Sasaki, M., Chem. Lett.
1981, 551. (b) Shono, T.; Nishiguchi, I.; Sasaki, M., J. Am. Chem. Soc.
1978, 100, 4314.
35.
(a) Petrier, C.; Luche, J.-L., J. Org. Chem. 1985, 50, 910. (b) Petrier, C.;
Einhorn, J.; Luche, J.-L., Tetrahedron Lett. 1985, 26, 1449. (c) Einhorn,
C.; Luche, J.-L., J. Organomet. Chem. 1987, 322, 177. (d) Knochel,
P.; Normant, J. F., Tetrahedron Lett. 1984, 25, 1475. (e) Knochel, P.;
Normant, J. F., J. Organomet. Chem. 1986, 309, 1.
36.
(a) Öhler, E.; Reininger, K.; Schmidt, U., Angew. Chem., Int. Ed. Engl.
1970, 9, 457. (b) Löffler, A.; Pratt, R. D.; Pucknat, J.; Gelbard, G.;
Dreiding, A. S., Chimia 1969, 23, 413. (c) Auvray, P.; Knochel, P.;
Normant, J. F., Tetrahedron 1988, 44, 4495. (d) Auvray, P.; Knochel,
P.; Normant, J. F., Tetrahedron 1988, 44, 4509. (e) El Alami, N.; Belaud,
C.; Villiéras, J., J. Organomet. Chem. 1987, 319, 303. (f) El Alami, N.;
Belaud, C.; Villiéras, J., J. Organomet. Chem. 1988, 348, 1. (g) Belaud,
C.; Roussakis, C.; Letourneux, Y.; El Alami, N.; Villiéras, J., Synth.
Commun. 1985
, 15, 1233. (h) El Alami, N.; Belaud, C.; Villiéras, J.,
Tetrahedron Lett. 1987
, 28, 59. (i) Semmelhack, M. F.; Wu, E. S. C., J.
Am. Chem. Soc. 1976
, 98, 3384.
37.
(a) Chidgey, R.; Hoffmann, H. M. R., Tetrahedron Lett. 1977, 2633.
(b) Vinter, J. G.; Hoffmann, H. M. R., J. Am. Chem. Soc. 1974, 96,
5466. (c) Sato, T.; Noyori, R., Bull. Chem. Soc. Jpn. 1978, 51, 2745.
38.
(a) Emerson, W. S.; Neumann, F. W.; Moundres, T. P., J. Am. Chem.
Soc. 1941
, 63, 972. (b) Bellasio, E., Synth. Commun. 1976, 6, 85.
(c) Niemers, E.; Hiltmann, R., Synthesis 1976, 593.
39.
(a) Fehr, T.; Stadler, P. A.; Hofmann, A., Helv. Chim. Acta 1970, 53,
2197. (b) Pfaltz, A.; Anwar, S., Tetrahedron Lett. 1984, 25, 2977.
(c) Atta-Ur-Rahman, Basha, A., J. Chem. Soc., Chem. Commun. 1976,
594.
40.
(a) Kurozumi, S.; Toru, T.; Kobayashi, M.; Ishimoto, S., Synth.
Commun. 1977
, 7, 427. (b) Schmid, H.; Schnetzler, E., Helv. Chim. Acta
1951, 34, 894. (c) Katayama, S.; Fukuda, K.; Watanabe, T.; Yamauchi,
M., Synthesis 1988, 178. (d) Ide, J.; Kishida, Y., Bull. Chem. Soc. Jpn.
1976, 49, 3239.
41.
(a) Johnson, A. W.; Price, R., Org. Synth., Coll. Vol. 1973, 5, 1022.
(b) Zambito, A. J.; Howe, E. E., Org. Synth., Coll. Vol. 1973, 5, 373.
42.
(a) Kamm, O., Org. Synth., Coll. Vol. 1941, 1, 445. (b) Kuhn, W. E.,
Org. Synth., Coll. Vol. 1943
, 2, 447. (c) Martin, E. L., Org. Synth.,
Coll. Vol. 1943
, 2, 501. (d) Shriner, R. L.; Neumann, F. W., Org.
Synth., Coll. Vol. 1955
, 3, 73. (e) Bigelow, H. E.; Robinson, D. B., Org.
Synth., Coll. Vol. 1955
, 3, 103. (f) Coleman, G. H.; McCloskey, C. M.;
Suart, F. A., Org. Synth., Coll. Vol. 1955, 3, 668.
43.
(a) Fischer, H., Org. Synth., Coll. Vol. 1943, 2, 202. (b) Hatt, H. H.,
Org. Synth., Coll. Vol. 1943
, 2, 211. (c) Hartman, W. W.; Roll, L. J.,
Org. Synth., Coll. Vol. 1943
, 2, 418. (d) Achiwa, K.; Yamada, S. I.,
Tetrahedron Lett. 1975
, 2701.
44.
(a) Whitmore, F. C.; Hamilton, F. H., Org. Synth., Coll. Vol. 1941, 1,
492. (b) Adams, R.; Mawel, C. S., Org. Synth., Coll. Vol. 1941, 1, 504.
(c) Allen, C. F. H.; MacKay, D. D., Org. Synth., Coll. Vol. 1943, 2, 580.
(d) Caesar, P. D., Org. Synth., Coll. Vol. 1963, 4, 695.
45.
(a) Arora, A. S.; Ugi, I. K., Methoden Org. Chem. (Houben-Weyl) 1972,
V/1b
, 740. (b) Stroh, R., Methoden Org. Chem. (Honben-Weyl) 1960,
V/4
, 721. (c) Jäger, V.; Viehe, H. G., Methoden Org. Chem. (Houben-
Weyl) 1977
, V/2a, 39. (d) Neunhoeffer, H.; Franke, W. K., Methoden
Org. Chem. (Honben-Weyl) 1972
, 5/1d, 656. (e) Csuk, R.; Glänzer, B.
I.; Fürstner, A., Adv. Organomet. Chem. 1988, 28, 85.
46.
(a) Deprés, J.-P.; Greene, A. E., Org. Synth., Coll. Vol. 1993, 8, 377.
(b) Smith, C. W.; Norton, D. G., Org. Synth., Coll. Vol. 1963, 4, 348.
(c) Brady, W. T.; Patel, A. D., Synthesis 1972, 565. (d) Hassner, A.;
Dillon, J. L., J. Org. Chem. 1983, 48, 3382. (e) Ammann, A. A.; Rey,
M.; Dreiding, A. S., Helv. Chim. Acta 1987, 70, 321. (f) McCarney, C.
C.; Ward, R. S., J. Chem. Soc., Perkin Trans. 1 1975, 1600.
47.
(a) Angus, R. O.; Johnson, R. P., J. Org. Chem. 1983, 48, 273.
(b) Rubottom, G. M.; Wey, J. E., Synth. Commun. 1984, 14, 507. (c)
Han, B. H.; Boudjouk, P., J. Org. Chem. 1982, 47, 751. (d) Sato, F.;
Akiyama, T.; Iida, K.; Sato, M., Synthesis 1982, 1025. (e) Chapman,
O. L.; Chang, C. C.; Rosenquist, N. R., J. Am. Chem. Soc. 1976, 98,
262. (f) Burton, D. J.; Greenlimb, P. E., J. Org. Chem. 1975, 40, 2796.
(g) Gund, T. M.; Schleyer, P. V. R., Tetrahedron Lett. 1973, 1959. (h)
A list of General Abbreviations appears on the front Endpapers
ZINC
15
Read, G.; Ruiz, V. M., J. Chem. Soc., Perkin Trans. 1 1973, 1223. (i)
Cava, M. P.; Buck, K. T., J. Am. Chem. Soc. 1973, 95, 5805. (j) Gaoni,
Y., Tetrahedron Lett. 1973, 2361.
48.
(a) Finnegan, W. G.; Norris, W. P., J. Org. Chem. 1963, 28, 1139.
(b) Banks, R. E.; Barlow, M. G.; Davies, W. D.; Haszeldine, R. N.;
Mullen, K.; Taylor, D. R., Tetrahedron Lett. 1968, 3909. (c) Haszeldine,
R. N., J. Chem. Soc. 1952, 2504.
49.
Fürstner, A.; Weidmann, H., J. Org. Chem. 1989, 54, 2307.
50.
(a) Imai, J.; Torrence, P. F., J. Org. Chem. 1981, 46, 4015. (b) Corey,
E. J.; Trybulski, E. J.; Suggs, J. W., Tetrahedron Lett. 1976, 4577. (c)
Corey, E. J.; Ruden, R. A., J. Org. Chem. 1973, 38, 834. (d) Eckstein, F.;
Scheit, K.-H., Angew. Chem., Int. Ed. Engl. 1967, 6, 362. (e) Franke, A.;
Scheit, K.-H.; Eckstein, F., Chem. Ber. 1968, 101, 2998. (f) Windholz,
T. B.; Johnston, D. B. R., Tetrahedron Lett. 1967, 2555. (g) Pike, J.
E.; Lincoln, F. H.; Schneider, W. P., J. Org. Chem. 1969, 34, 3552. (h)
Horne, D.; Gaudino, J.; Thompson, W. J., Tetrahedron Lett. 1984, 25,
3529.
51.
Heathcock, C. H. In Asymmetric Synthesis; Morrison, J. D., Ed.;
Academic: London, 1983; p 111.
52.
(a) Csuk, R.; Fürstner, A.; Weidmann, H., J. Chem. Soc., Chem.
Commun. 1986
, 775. (b) Rieke, R. D.; Uhm, S. J., Synthesis 1975,
452. (c) Boudjouk, P.; Thompson, D. P.; Ohrbom, W. H.; Han, B. H.,
Organometallics 1986
, 5, 1257. (d) Ruggeri, R. B.; Heathcock, C. H.,
J. Org. Chem. 1987
, 52, 5745. (e) Flitsch, W.; Rußkamp, P., Liebigs
Ann. Chem. 1985
, 1398. (f) Rice, L. E.; Boston, M. C.; Finklea, H. O.;
Suder, B. J.; Frazier, J. O.; Hudlicky, T., J. Org. Chem. 1984, 49, 1845.
(g) Boldrini, G. P.; Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-
Ronchi, A., J. Org. Chem. 1983, 48, 4108.
53.
(a) Seyferth, D.; Andrews, S. B., J. Organomet. Chem. 1971, 30, 151.
(b) Seyferth, D.; Dertouzos, H.; Todd, L. J., J. Organomet. Chem. 1965,
4
, 18. (c) Sidduri, A.; Rozema, M. J.; Knochel, P., J. Org. Chem. 1993,
58
, 2694. (d) Denis, J. M.; Girard, C.; Conia, J. M., Synthesis 1972,
549.
54.
(a) Gaudemar, M., Bull. Soc. Chem. Fr. 1962, 974. (b) Knochel, P.;
Yeh, M. C. P.; Berk, S. C.; Talbert, J., J. Org. Chem. 1988, 53, 2390.
(c) Knochel, P.; Rozema, M. J.; Tucker, C. E.; Retherford, C.; Furlong,
M.; AchyuthaRao, S., Pure Appl. Chem. 1992, 64, 361. (d) Berk, S. C.;
Knochel, P.; Yeh, M. C. P., J. Org. Chem. 1988, 53, 5789. (e) Chen,
H. G.; Hoechstetter, C.; Knochel, P., Tetrahedron Lett. 1989, 30, 4795.
(f) Berk, S. C.; Yeh, M. C. P.; Jeong, N.; Knochel, P., Organometallics
1990, 9, 3053. (g) Yeh, M. C. P.; Knochel, P., Tetrahedron Lett. 1988,
29
, 2395. (h) Majid, T. N.; Yeh, M. C. P.; Knochel, P., Tetrahedron
Lett. 1989
, 30, 5069. (i) Retherford, C.; Chou, T.-S.; Schelkun, R. M.;
Knochel, P., Tetrahedron Lett. 1990, 31, 1833. (j) Knochel, P., J. Am.
Chem. Soc. 1990
, 112, 7431. (k) Knochel, P.; Chou, T.-S.; Chen, H.-
G.; Yeh, M. C. P.; Rozema, M. J., J. Org. Chem. 1989, 54, 5202. (l)
Chou, T.-S.; Knochel, P., J. Org. Chem. 1990, 55, 4791. (m) Knochel, P.;
Chou, T.-S.; Jubert, C.; Rajagopal, D., J. Org. Chem. 1993, 58, 588. (n)
AchyuthaRao, S.; Tucker, C. E.; Knochel, P., Tetrahedron Lett. 1990,
31
, 7575. (o) AchyuthaRao, S.; Chou, T.-S.; Schipor, I.; Knochel, P.,
Tetrahedron 1992
, 48, 2025. (p) Yeh, M. C. P.; Chen, H. G.; Knochel, P.,
Org. Synth. 1991
, 70, 195. (q) Knoess, H. P.; Furlong, M. T.; Rozema,
M. J.; Knochel, P., J. Org. Chem. 1991, 56, 5974. (r) Yeh, M. C. P.;
Knochel, P.; Butler, W. M.; Berk, S. C., Tetrahedron Lett. 1988, 29,
6693. (s) Yeh, M. C. P.; Knochel, P.; Santa, L. E., Tetrahedron Lett.
1988, 29, 3887. (t) Yeh, M. C. P.; Knochel, P., Tetrahedron Lett. 1989,
30
, 4799. (u) AchyuthaRao, S.; Knochel, P., J. Am. Chem. Soc. 1991,
113
, 5735. (v) Knochel, P., Comprehensive Organic Synthesis 1991,
4
, 865. (w) Retherford, C.; Yeh, M. C. P.; Schipor, I.; Chen, H.-G.;
Knochel, P., J. Org. Chem. 1989, 54, 5200. (x) Retherford, C.; Knochel,
P., Tetrahedron Lett. 1991, 32, 441. (y) Jubert, C.; Knochel, P., J. Org.
Chem. 1992
, 57, 5431. (z) Chen, H. G.; Gage, J. L.; Barrett, S. D.;
Knochel, P., Tetrahedron Lett. 1990, 31, 1829.(aa) Sidduri, A.; Budries,
N.; Laine, R. M.; Knochel, P., Tetrahedron Lett. 1992, 33, 7515.(ab)
Cahiez, G.; Venegas, P.; Tucker, C. E.; Majid, T. N.; Knochel, P., J.
Chem. Soc., Chem. Commun. 1992
, 1406.
55.
(a) Negishi, E.; Valente, L. F.; Kobayashi, M., J. Am. Chem. Soc. 1980,
102
, 3298. (b) Kobayashi, M.; Negishi, E., J. Org. Chem. 1980, 45,
5223. (c) Negishi, E., Acc. Chem. Res. 1982, 15, 340. (d) Tamaru, Y.;
Ochiai, H.; Yoshida, Z., Tetrahedron Lett. 1984, 25, 3861. (e) Tamaru,
Y.; Ochiai, H.; Nakamura, T.; Tsubaki, K.; Yoshida, Z., Tetrahedron
Lett. 1985
, 26, 5559. (f) Tamaru, Y.; Ochiai, H.; Sanda, F.; Yoshida, Z.,
Tetrahedron Lett. 1985
, 26, 5529. (g) Tamaru, Y.; Ochiai, H.; Nakamura,
T.; Yoshida, Z., Tetrahedron Lett. 1986, 27, 955. (h) Tamaru, Y.; Ochiai,
H.; Nakamura, T.; Yoshida, Z., Angew. Chem., Int. Ed. Engl. 1987, 26,
1157. (i) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima,
I., J. Am. Chem. Soc. 1987, 109, 8056.
56.
(a) Jackson, R. F. W.; James, K.; Wythes, M. J.; Wood, A., J. Chem.
Soc., Chem. Commun. 1989
, 644. (b) Jackson, R. F. W.; Wythes, M.
J.; Wood, A., Tetrahedron Lett. 1989, 30, 5941. (c) Jackson, R. F. W.;
Wood, A.; Wythes, M. J., Synlett 1990, 735. (d) Dunn, M. J.; Jackson,
R. F. W., J. Chem. Soc., Chem. Commun. 1992, 319. (e) Jackson, R. F.
W.; Wishart, N.; Wythes, M. J., J. Chem. Soc., Chem. Commun. 1992,
1587. (f) Dunn, M. J.; Jackson, R. F. W.; Stephenson, G. R., Synlett
1992, 905. (g) Jackson, R. F. W.; Wishart, N.; Wythes, M. J., Synlett
1993, 219. (h) Jackson, R. F. W.; Wishart, N.; Wood, A.; James, K.;
Wythes, M. J., J. Org. Chem. 1992, 57, 3397.
57.
Burton, D. J.; Xang, Z.-Y., Tetrahedron 1992, 48, 189.
58.
Jubert, C.; Knochel, P., J. Org. Chem. 1992, 57, 5425.
59.
(a) Majid, T. N.; Knochel, P., Tetrahedron Lett. 1990, 31, 4413.
(b) JanakiramRao, C.; Knochel, P., J. Org. Chem. 1991, 56, 4593. (c)
Waas, J. R.; Sidduri, A.; Knochel, P., Tetrahedron Lett. 1992, 33, 3717.
(d) JanakiramRao, C.; Knochel, P., Tetrahedron 1993, 49, 29.
60.
(a) Zhu, L.; Wehmeyer, R. M.; Rieke, R. D., J. Org. Chem. 1991, 56,
1445. (b) Zhu, L.; Rieke, R. D., Tetrahedron Lett. 1991, 32, 2865.
(c) Klabunde, K. J., Angew. Chem., Int. Ed. Engl. 1975, 14, 287. (d)
Murdock, T. O.; Klabunde, K. J., J. Org. Chem. 1976, 41, 1075.
61.
Sibille, S.; Ratovelomanana, V.; Périchon, J., J. Chem. Soc., Chem.
Commun. 1992
, 283.
62.
(a) Gaudemar, M., Bull. Soc. Chem. Fr. 1963, 1475. (b) Miginiac, L.
In The Chemistry of the Metal–Carbon Bond;Hartley F. R.,Patai, S.,
Eds.,Wiley:New York, 1985; Vol. 3,p 99.
63.
AchyuthaRao, S.; Knochel, P., J. Org. Chem. 1991, 56, 4591.
64.
Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z., Org. Synth. 1988,
67
, 98.
65.
(a) Dembélé, Y. A.; Belaud, C.; Hitchcock, P.; Villiéras, J., Tetrahedron:
Asymmetry 1992
, 3, 351. (b) Dembélé, Y. A.; Belaud, C.; Villiéras, J.,
Tetrahedron: Asymmetry 1992
, 3, 511.
66.
(a) Tucker, C. E.; Knochel, P., Synthesis 1993, 530. (b) Tucker, C.
E.; AchyuthaRao, S.; Knochel, P., J. Org. Chem. 1990, 55, 5446.
(c) Gaudemar, M., C.R. Hebd. Seances Acad. Sci., Ser. C 1971, 273,
1669. (d) Frangin, Y.; Gaudemar, M., C.R. Hebd. Seances Acad. Sci.,
Ser. C 1974
, 278, 885. (e) Knochel, P.; Yeh, M. C. P.; Xiao, C.,
Organometallics 1989
, 8, 2831. (f) Knochel, P.; Xiao, C.; Yeh, M.
C. P., Tetrahedron Lett. 1988, 29, 6697. Knochel, P.; Normant, J. F.,
Tetrahedron Lett. 1986
, 27, 1039, 1043, 4427, 4431, 5727.
67.
Rozema, M. J.; Rajagopal, D.; Tucker, C. E.; Knochel, P., J. Organomet.
Chem. 1992
, 438, 11.
68.
(a) Hanson, J. R., Synthesis 1974, 1. (b) McMurry, J. E.; Kees, K. L.,
J. Org. Chem. 1977
, 42, 2655. (c) Sato, F.; Akiyama, T.; Iida, K.; Sato,
M., Synthesis 1982, 1025. (d) Aizpurua, J. M.; Palomo, C., Nouv. J.
Chim. 1984
, 8, 51. (e) Bricklebank, N.; Godfrey, S. M.; McAuliffe, C.
A.; Mackie, A. G.; Pritchard, R. G., J. Chem. Soc., Chem. Commun.
1992, 944.
69.
Yeung, Y.-O.; Liu, R. C. W.; Law, W.-F.; Lau, P.-L.; Jiang, J.; Ng, D.
K. P., Tetrahedron 1997, 53, 9087.
70.
Yadav, J. S.; Barma, D. K., Tetrahedron 1996, 52, 4457.
71.
(a) Bargues, V.; Blay, G.; Cardona, L.; Garcia, B.; Pedro, J. R.,
Tetrahedron Lett. 1995
, 36, 8469. (b) Blay, G.; Bargues, V.; Cardona,
L.; Garcia, B.; Pedro, J. R., Tetrahedron 2001, 57, 9719.
72.
Neo, A. G.; Delgado, J.; Polo, C.; Marcaccini, S.; Marcos, C. F.,
Tetrahedron Lett. 2005
, 46, 23.
Avoid Skin Contact with All Reagents
16
ZINC
73.
Grant, A. A.; Allukian, M.; Fry, A. J., Tetrahedron Lett. 2002, 43,
4391.
74.
Dutta, D. K.; Konwar, D., Tetrahedron Lett. 2000, 41, 6227.
75.
(a) Shono, T.; Kise, N.; Oike, H.; Yoshimoto, M.; Okazaki, E.,
Tetrahedron Lett. 1992
, 33, 5559. (b) Dutta, M. P.; Baruah, B.; Boruah,
A.; Prajapati, D.; Sandhu, J. S., Synlett 1998, 857. (c) Tsukinoki,
T.; Mitoma, Y.; Nagashima, S.; Kawaji, T.; Hashimoto, I.; Tashiro,
M., Tetrahedron Lett. 1998, 39, 8873. (d) Alexakis, A.; Aujard, I.;
Mangeney, P., Synlett 1998, 873 and 875.
76.
(a) Kise, N.; Oike, H.; Okazaki, E.; Yoshimoto, M.; Shono, T., J. Org.
Chem. 1995
, 60, 3980. (b) Pansare, S.; Malusare, M. G., Tetrahedron
Lett. 1996
, 37, 2859.
77.
(a) Kise, N.; Ueda, N., Tetrahedron Lett. 2001, 42, 2365. (b) Kise,
N.; Takaoka, S.; Yamauchi, M.; Ueda, N., Tetrahedron Lett. 2002, 43,
7297.
78.
Shono, T.; Kise, N.; Nomura, R.; Ymanami, A., Tetrahedron Lett. 1993,
34
, 3577.
79.
Srinivasa, G. R.; Babu, S. N. N.; Lakshmi, C.; Gowda, D. C., Synth.
Commun. 2004
, 34, 1831.
80.
Yadav, J. S.; Reddy, B. V. S.; Reddy, K. S.; Reddy, K. B., Tetrahedron
Lett. 2002
, 43, 1549.
81.
Hansen, M. M.; Harkness, A. R., Tetrahedron Lett. 1994, 35,
6971.
82.
Hanse, M. M.; Grutsch, J. L., Org. Process Res. Dev. 1997, 1, 168.
83.
Lin, W.; Zhang, X.; He, Z.; Jin, Y.; Gong, L.; Mi, A., Synth. Commun.
2002, 32, 3279.
84.
Kamal, A.; Reddy, K. S.; Prasad, B. R.; Babu, A. H.; Ramana, A. V.,
Tetrahedron Lett. 2004
, 45, 6517.
85.
(a) Gowda, S.; Abiraj, K.; Channe Gowda, D., Tetrahedron Lett. 2002,
43
, 1329. (b) Sridhara, M. B.; Srinivasa, G. R.; Channe Gowda, D.,
Synth. Commun. 2004
, 34, 1441.
86.
Balicki, R.; Cybulski, M.; Maciejewski, G., Synth. Commun. 2003, 33,
4137.
87.
Black, D. S.; Edwards, G. L.; Evans, G. L.; Keller, P. A.; Laaman, S.
M., Tetrahedron 2000, 56, 1889.
88.
Boger, D. L.; Hong, J., J. Am. Chem. Soc. 2001, 123, 8515.
89.
Le Gall, E.; Malassene, R.; Toupet, L.; Hurvois, J.-P.; Moinet, C., Synlett
1999; 1383.
90.
Khan, F. A.; Dash, J.; Sudheer, C.; Gupta, R. K., Tetrahedron Lett. 2003,
44
, 7783.
91.
Boix, C.; Poliakoff M., J. Chem. Soc., Perkin Trans. 1 1999; 1487.
92.
Gowda, S.; Gowda, B. K. K.; Gowda, D. C., Synth. Commun. 2003, 33,
281.
93.
Boruah, A.; Baruah, M.; Prajapati, D.; Sandhu, J. S., Synlett 1997;
1253.
94.
(a) Movassagh, B.; Lakouraj, M. M.; Fadaei, Z., J. Chem. Res.
(Synopsis) 2000
; 350. (b) Lakouraj, M. M.; Movassagh, B.; Fadaei,
Z., Synth. Commun. 2002, 32, 1237. (c) Movassagh, B.; Mossadegh,
A., Synth. Commun. 2004, 34, 2337.
95.
Taniguchi, N., J. Org. Chem. 2004, 69, 6904.
96.
Uchiro, H.; Kobayashi, S., Tetrahedron Lett. 1999, 40, 3179.
97.
Yamamoto, Y.; Saito, K., Organometallics 1997, 16, 2207.
98.
Chen, B.-C.; Quinlan, S. L.; Stark, D. R.; Reid, J. G., Tetrahedron Lett.
1995, 36, 7957.
99.
Habashita, H.; Kawasaki, T.; Akaji, M.; Tamamura, H.; Kimachi, T.;
Fujii, N.; Ibuka, T., Tetrahedron Lett. 1997, 38, 8307.
100.
Astudillo, L.; Gonzalez, A. G.; Galindo, A.; Mansilla, H., Tetrahedron
Lett. 1997
, 38, 6737.
101.
Bernet, B.; Vasella, A., Helv. Chim. Acta 1979, 62, 1990.
102.
(a) Hyldtoft, L.; Poulsen, C. S.; Madsen, R., Chem. Commun. 1999;
2101. (b) Hydtoft, L.; Madsen, R., J. Am. Chem. Soc. 2000, 122, 8444.
(c) Boyer, F.-D.; Hanna, I.; Nolan, S. P., J. Org. Chem. 2001, 66, 4094.
(d) Hanna, I.; Ricard, L., Org. Lett. 2000, 2, 2651. (e) Boyer, F.-D.;
Hanna, I., Tetrahedron Lett. 2001, 42, 1275. (f) Skaanderup, P. R.;
Madsen, R., Chem. Commun. 2001; 1106. (g) Poulsen, C. S.; Madsen,
R., J. Org. Chem. 2002, 67, 4441.
103.
Vatèle, J.-M., Tetrahedron Lett. 2003, 44, 9127.
104.
Yu, B.; Li, B.; Zhang, J.; Hui, Y., Tetrahedron Lett. 1998, 39, 4871.
105.
Buynak, J. D.; Doppalapudi, V. R.; Frotan, M.; Kumar, R.; Chambers,
A., Tetrahedron 2000, 56, 5709.
106.
Wang, L.; Li, P.; Yan, J.; Wu, Z., Tetrahedron Lett. 2003, 44, 4685.
107.
Montana, A. M.; Grima, P. M., Synth. Commun. 2003, 33, 265.
108.
Dolbier, W. R.; Duan, J.-X.; Roche, A. J., Org. Lett. 2000, 2, 1867.
109.
Laev, S. S.; Shteingarts, V. D., Tetrahedron Lett. 1995, 36, 4655.
110.
Yadav, J. S.; Reddy, G. S.; Srinivas, D.; Himabindu, K., Synth. Commun.
1998, 28, 2337.
111.
(a) Meshram, H. M.; Reddy, G. S.; Reddy, M. M.; Yadav, J. S.,
Tetrahedron Lett. 1998
, 39, 4103. (b) Gopi, H. N.; Babu, V. V. S.,
Tetrahedron Lett. 1998
, 39, 9769.
112.
Meshram, H. M.; Reddy, G. S.; Bindu, K. H.; Yadav, J. S., Synlett 1998;
877.
113.
Meshram, H. M.; Reddy, G. S.; Reddy, M. M.; Yadav, J. S., Tetrahedron
Lett. 1998
, 39, 4107.
114.
Yadav, J. S.; Reddy, G. S.; Reddy, M. M.; Meshram, H. M., Tetrahedron
Lett. 1998
, 39, 3262.
115.
Meshram, H. M.; Reddy, G. S.; Reddy, M. M.; Yadav, J. S., Synth.
Commun. 1998
, 28, 2203.
116.
Paul, S.; Nanda, P.; Gupta, R.; Loupy, A., Synthesis 2003; 2872.
117.
Yadav, J. S.; Reddy, B. V. S.; Kondaji, G.; Rao, R. S.; Kumar, S. P.,
Tetrahedron Lett. 2002
, 43, 8133.
118.
Chemal, F., Synlett 1998, 894.
119.
(a) Takai, K.; Kakiuchi, T.; Utimoto, K., J. Org. Chem. 1994, 59, 2671.
(b) Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K., J. Org. Chem.
1994, 59, 2668.
120.
(a) Lièvre, C.; Fréchou, C.; Demailly, G., Tetrahedron Lett. 1995, 36,
6467. (b) Lièvre, C.; Fréchou, C.; Demailly, G., Chem. Rev. 1997,
303
, 1. (c) Le Mognot, V.; Lièvre, C.; Frèchou, C.; Demailly, G.,
Tetrahedron Lett. 1998
, 39, 983. (d) Dolhem, F.; Lièvre, C.; Demailly,
G., Tetrahedron Lett. 2002, 43, 1847.
121.
(a) Motherwell, W. B.; O’Mahony, D. J. R.; Popkin, M. E., Tetrahedron
Lett. 1998
, 39, 5285. (b) Fletcher, R. J.; Motherwell, W. B.; Popkin, M.
E., Chem. Commun. 1998; 2191. (c) Motherwell, W. B., J. Organomet.
Chem. 2001
, 624, 41. (d) Aqil, R.; Motherwell, W. B.; Roberts,
L. R.; Russell, C. A., Tetrahedron Lett. 2002, 43, 9671. (e) Bégis,
G.; Cladingboel, D.; Motherwell, W. B., Chem. Commun. 2003;
2656.
122.
Knochel, P.; Almena Perea, J. J.; Jones, P., Tetrahedron 1998, 54,
8275.
123.
(a) Hunter, C.; Jackson, R. F. W.; Rami, H. K., J. Chem. Soc., Perkin
Trans. 1 2001
; 1349. (b) Duddu, R.; Eckhardt, M.; Furlong, M.; Knoess,
H. P.; Berger, S.; Knochel, P., Tetrahedron 1994, 50, 2415. (c) Karstens,
W. F. J.; Stol, M.; Rutjes, F. P. J. T.; Hiemstra, H., Synlett 1998;
1126.
124.
(a) Dunn, M. J.; Jackson, R. F. W.; Pietruszka, J.; Wishart, N.; Ellis, D.;
Wythes, M. J., Synlett 1993; 499. (b) Dow, R. L.; Bechle, B. M., Synlett
1994; 293. (c) Dunn, M. J.; Jackson, R. F. W.; Pietruszka, J.; Turner,
D., J. Org. Chem. 1995, 30, 2210. (d) Jackson, R. F. W.; Moore, R. J.;
Dexter, C. S., J. Org. Chem. 1998, 63, 7875. (e) Fraser, J. L.; Jackson,
R. F. W.; Porter, B., Synlett 1994, 379. (f) Fraser, J. L.; Jackson, R.
F. W.; Porter, B., Synlett 1995, 819. (g) Dexter, C. S.; Jackson, R. F.
W., Chem. Commun. 1998, 75. (h) Dexter, C. S.; Jackson, R. F. W., J.
Org. Chem. 1999
, 64, 7579. (i) Dexter, C. S.; Hunter, C.; Jackson, R.
F. W., J. Org. Chem. 2000, 65, 7421. (j) Jackson, R. F. W.; Rilatt, I.;
Murray, P. J., Chem. Commun. 2003; 1242. (k) Jackson, R. F. W.; Rilatt,
I.; Murray, P. J., Org. Biomol. Chem. 2004, 2, 110.
125.
Prasad, A. S. B.; Stevenson, T. M.; Citineni, J. R.; Nyzam, V.; Knochel,
P., Tetrahedron 1997, 53, 7237.
A list of General Abbreviations appears on the front Endpapers
ZINC
17
126.
Prasad, A. S. B.; Knochel, P., Tetrahedron 1997, 53, 16711.
127.
Stevenson, T. M.; Prasad, A. S. B.; Citineni, J. R.; Knochel, P.,
Tetrahedron Lett. 1996
, 37, 8375.
128.
Huo, S., Org. Lett. 2003, 5, 423.
129.
Mellah, M.; Labbé, E.; Nédélec, J. Y.; Périchon, J., New J. Chem. 2001,
25
, 318.
130.
(a) Gosmini, C.; Rollin, Y.; Nédélec, J. Y.; Périchon, J., J. Org. Chem.
2000, 65, 6024. (b) Fillon, H.; Le Gall, E.; Gosmini, C.; Périchon, J.,
Tetrahedron Lett. 2002
, 43, 5941. (c) Seka, S.; Buriez, O.; Nédélec, J.
Y.; Périchon, J., Chem. Eur. J. 2002, 8, 2534. (d) Seka, S.; Buriez, O.;
Périchon, J., Chem. Eur. J. 2003, 9, 3597.
131.
(a) Gomes, P.; Fillon, H.; Gosmini, C.; Labbé, E, Périchon, J.,
Tetrahedron 2002
, 58, 8417. (b) Gomes, P.; Gosmini, C.; Périchon,
J., Synlett 2002; 1673.
132.
(a) Fillon, H.; Gosmini, C.; Périchon, J., J. Am. Chem. Soc. 2003,
125
, 3867. (b) Kazmierski, I.; Gosmini, C.; Paris, J. M.; Périchon,
J., Tetrahedron Lett. 2003, 44, 6417. (c) Kazmierski, I.; Bastienne,
M.; Gosmini, C.; Paris, J. M.; Périchon, J., J. Org. Chem. 2004, 69,
936.
133.
(a) Li, C.-J., Chem. Rev. 1993, 93, 2023. (b) Bieber, L. W.; Malvestiti,
I.; Storch, E. C., J. Org. Chem. 1997, 62, 9061. (c) Chattopadhyay, A.;
Salaskar, A., Synthesis 2000, 561.
134.
(a) Lubineau, A.; Augé, J., Queneau, Y., Synthesis 1994; 741. (b) Li,
C.-J., Tetrahedron 1996, 52, 5643.
135.
(a) Pétrier, C.; Luche, J. L., J. Org. Chem. 1985, 50, 910. (b) Einhorn,
C.; Luche, J. L., J. Organomet. Chem. 1987, 322, 177. (c) Pétrier, C.;
Einhorn, J.; Luche, J. L., Tetrahedron Lett. 1985, 26, 1446. (d) Bieber,
L. W.; Da Silva, M. F.; Da Costa, R. C, Silva, L. O. S., Tetrahedron
Lett. 1998
, 39, 3655. (e) Yavari, I.; Riazi-Kermani, F., Synth. Commun.
1995, 25, 2923. (f) Makosza, M.; Grela, K., Synth. Commun. 1996, 26,
2935.
136.
(a) Haberman, J. X.; Li, C.-J., Tetrahedron Lett. 1997, 38, 4735. (b) Li,
C.-J.; Chen, D. L.; Lu, Y. Q.; Haberman, J. X.; Mague, J. T., Tetrahedron
1998, 54, 2347.
137.
Sugi, M.; Sukuma, D.; Togo, H., J. Org. Chem. 2003, 68, 7629.
138.
(a)
Chattopadhyay,
A.,
J.
Org.
Chem.
1996,
61
,
6104.
(b) Chattopadhyay, A.; Dhotare, B., Tetrahedron: Asymmetry 1998,
9
, 2715. (c) Chattopadhyay, A.; Dhotare, B.; Hassarajani, S., J. Org.
Chem. 1999
, 64, 6874. (d) Hanessian, S.; Yang, R.-Y., Tetrahedron Lett.
1996, 37, 5273. (e) Hanessian, S.; Park, H.; Yang, R.-Y., Synlett 1997,
353.
139.
Marquez, F.; Llebaria, A.; Delgado, A., Org. Lett. 2000, 2, 547.
140.
Lu, W.; Chan, T. H., J. Org. Chem. 2000, 65, 8589.
141.
Chung, W. J.; Higashiya, S.; Oba, Y.; Welch, J. T., Tetrahedron 2003,
59
, 10031.
142.
Wang, D.-K.; Dai, L.-X.; Hou, X.-L.; Zhang, Y., Tetrahedron Lett. 1996,
37
, 4187.
143.
(a) Ranu, B. C.; Majee, A.; Das, A. R., Tetrahedron Lett. 1996, 37, 1109.
(b) Ishino, Y.; Mihara, M.; Kageyama, M., Tetrahedron Lett. 2002, 43,
6601.
144.
(a) Sun, P.; Wang, L.; Zhang, Y., Tetrahedron Lett. 1997, 38, 5549. (b)
Sun, X.; Wang, L.; Zhang, Y., Synth. Commun. 1998, 28, 1785.
145.
Petrini, M.; Profeta, R.; Righi, P., J. Org. Chem. 2002, 67, 4530.
Avoid Skin Contact with All Reagents