MORPHOLINE
1
Morpholine
N
H
O
[110-91-8]
C
4
H
9
NO
(MW 87.14)
InChI = 1/C4H9NO/c1-3-6-4-2-5-1/h5H,1-4H2
InChIKey = YNAVUWVOSKDBBP-UHFFFAOYAU
(secondary amine base; reagent for enamine formation and
utilization; condensation catalyst for Mannich condensations)
Physical Data:
bp 128.9
◦
C; d 1.007 g cm
−
3
; pK
a
8.8.
Solubility:
miscible with water, acetone, diethyl ether.
Form Supplied in:
liquid, >99%.
Purification:
dried with KOH, fractionally distilled, dried for a
second time over sodium metal, then redistilled.
1
Handling, Storage, and Precautions:
eye and skin irritant; flamm-
able liquid; use in a fume hood.
Original Commentary
David Goldsmith
Emory University, Atlanta, GA, USA
Willgerodt Reaction.
2
Morpholine is employed as the amine
component of the Kindler modification of the Willgerodt reac-
tion. The process effects the rearrangement of aryl alkyl ketones
to carboxylic acid derivatives (eqs 1 and 2).
3,4
Morpholine is par-
ticularly useful in the reaction as its high boiling point makes the
use of sealed tubes unnecessary.
(1)
O
O
NH
N
O
S
S, p-TsOH, 130
°C
94%
O
O
O
O
NH
CO
2
H
HO
2
C
CO
2
H
S, heat
(2)
reflux
75%
H
3
O
+
Willgerodt-like processes are effected by treatment of benzyl-
phosphonates
5
and chlorides
6
with morpholine and Sulfur (eqs 3
and 4).
P(O)(OEt)
2
O
NH
N
S
O
S, THF
69%
(3)
Cl
O
2
N
O
NH
N
S
O
O
2
N
S, DMF
(4)
Enamine Formation and Utilization. Morpholine is one of
the three principal secondary amines used in the formation of
enamines.
7
–
10
A weaker base than either Piperidine or Pyrroli-
dine, it forms enamines more slowly than the other two bases. The
regioselectivity of morpholine enamine formation is significantly
less than with pyrrolidine.
11
The lower reactivity of morpholine has been used as a method
for the separation of monoalkylated cyclohexanones from unalky-
lated material (eq 5).
12
O
t
-Bu
O
t
-Bu
O
NH
N
O
t
-Bu
O
t
-Bu
(5)
+
+
Morpholine enamines of saturated ketones and aldehydes are
prepared by heating the base and the carbonyl compound alone in
benzene solution (eq 6),
10
by catalysis with p-Toluenesulfonic
Acid in toluene (eq 7),
13
and by catalysis with Titanium(IV)
Chloride (eq 8).
14
Aldehyde enamines may also be prepared by
decarboxylation of the morpholine enamines of substituted
pyruvic acids (eq 9).
15
O
NH
O
(6)
N
O
benzene, reflux
85%
O
NH
O
(7)
N
O
p
-TsOH
72–80%
O
NH
(8)
O
N
O
TiCl
4
88%
CO
2
H
O
O
NH
N
O
benzene, p-TsOH
heat, 94%
(9)
Avoid Skin Contact with All Reagents
2
MORPHOLINE
Enaminones may be prepared by conjugate addition of morpho-
line to an alkynic ketone (eq 10),
16
and the morpholine enamine
of pyruvaldehyde has been prepared by conjugate addition and
rearrangement of 2-chloroacrolein (eq 11).
17
O
NH
(10)
OH
OH
N
OH
O
O
MnO
2
, ether
86%
CHO
Cl
O
NH
N
O
CHO
TEA, THF
35%
(11)
Utilization of Morpholine Enamines. The less reactive mor-
pholine enamines have been shown to acylate in better yield than
the corresponding pyrrolidine derivatives.
10
A typical example
is the acylation of the morpholine enamine of cyclopentanone
(eq 12).
18
(12)
N
O
Cl
O
O
O
+
Miscellaneous Reactions. Morpholine is used as a base for
dehydrobromination (eq 13)
19
and in conjunction with molecular
Iodine for the iodination of alkynic alcohols (eq 14).
20
Br
Br
O
NH
DMSO
Br
(13)
(14)
O
NH
I
2
, 96%
OH
OH
I
Treatment of benzyl phenyl ketone with Thionyl Chloride and
morpholine results in the formation of benzil, a reaction which
presumably occurs through the intermediacy of the ketone enam-
ine (eq 15).
21
(15)
O
NH
SOCl
2
85%
O
O
O
Under high pressure, p-nitrophenyl triflate undergoes addition–
elimination with morpholine (eq 16).
22
OSO
2
CF
3
O
2
N
O
NH
N
O
2
N
O
MeCN
high pressure
100%
(16)
Morpholine, like other secondary amines, may be used for
Mannich-type condensations (eq 17).
23
(17)
N
CHO
O
NH
2
Cl
N
N
O
+
56%
First Update
Laurent Legentil
Industrial Research Limited, Lower Hutt, New Zealand
Willgerodt–Kindler Reaction. The conversion of aldehydes
and aryl alkyl ketones into thiomorpholides (Willgerodt–Kindler
reaction) by the combined action of Sulfur and morpholine has re-
cently been achieved under microwave irradiation in solvent-free
conditions.
24
The hydrolysis of thiomorpholides into carboxylic
acids can also proceed using microwave dielectric heating (eq 18).
Both reactions are faster and give better yields when compared
against conventional heating methods. The same procedure can
interestingly be applied for the transformation of styrenes to the
corresponding thioamides (eq 19).
25
Furthermore, hydrolysis of thiomorpholides under basic condi-
tions has been reported.
26
For example, benzyl thiomorpholides
have been transformed into phenylacetic acid derivatives by the
action of sodium hydroxide in the presence of a phase-transfer cat-
alyst (PTC) such as Tetrabutylammonium Bromide (eq 20).
27,28
CHO
R
S,
N
S
O
R
CO
2
H
R
MW, 4 min
MW, 1 min
N
H
O
15% NaOH
90–97%
(18)
65–100%
R
S,
S
N
O
R
MW, 8–10 min
N
H
O
(19)
63–82%
A list of General Abbreviations appears on the front Endpapers
MORPHOLINE
3
O
R
S,
N
S
O
R
PTC
CO
2
H
R
N
H
O
p
-TsOH
20% NaOH
reflux
55–80%
(20)
130
°C
Enamine Formation. Morpholine enamines are useful key
intermediates in important transformations that include alky-
lation and acylation (Stork’s reaction), annulation cascades,
cycloadditions, and a range of heterocycle syntheses.
29
As a cyclic
secondary amine, morpholine presents a higher nucleophilicity
compared to secondary acyclic amines, the result of which is an
enhancement in the yield of enamine formation.
30
However, the
selectivity of Stork’s reactions, for example, on such enamines is
rather low compared to the pyrrolidine and piperidine enamines.
New methodologies for the syntheses of morpholino enamines
include the use of solid KSF Clay
31
as a mild acidic catalyst. When
montmorillonite K 10 Clay
32
is employed, the reaction proceeds
conveniently under microwave irradiation and solvent-free con-
ditions to afford the enamines of various ketones, for example,
cyclohexanone (eq 21).
Morpholino enamines have also been generated under acid-
free conditions. Thus, a vinyl triflate leads to the corresponding
morpholino enamine under Palladium Acetate catalysis in the
presence of BINAP and Cesium Carbonate (eq 22).
33
Hydrolysis
of the enamine under mild acid conditions regenerates the parent
ketone. This is a useful route from ‘enol triflates to ketones’ as the
direct transformation is generally low yielding.
O
N
O
N
H
O
(21)
MW, 8 min
97%
K 10 clay
OTf
CMe
3
N
O
CMe
3
N
H
O
(22)
100%
Pd(OAc)
2
, BINAP
Cs
2
CO
3
, toluene
80
°C
Utilization of Morpholino Enamines.
Morpholino enam-
ines are extensively used as nucleophiles in organic synthesis.
They are key intermediates in the Robinson annulation reaction
between aldehydes
34
or ketones
35
and vinyl ketones (eq 23). Fur-
thermore, bis-electrophilic agents such as Acryloyl Chloride can
react with the morpholino enamine of N-carboxy-4-piperidones,
thereby providing access to bicyclo[3.3.1]nonane-6,9-diones
(eq 24).
36
Compared to reactions with pyrrolidino or piperidino
enamines, morpholino enamines give better yields.
O
NBoc
N
O
PhOCH
2
COCH
CH
2
O
O
Boc
N
O
(23)
0
°C
48%
Benzene
reflux
N
N
O
R
CH
2
CHCOCl
N
R
O
O
(24)
80
°C
80–85%
benzene
Utilization of 4-cyclohexylidenemethylmorpholine in an elec-
trochemically induced Diels–Alder reaction gives rise to highly
substituted 1,4-benzoxazines.
37
The anodic oxidation of 3,4-
aminophenol derivatives produces chemically unstable o-
azaquinone heterodienes, which can be trapped in situ by the
enamine dienophile through a regiospecific, inverse-electron
demand Diels–Alder reaction (eq 25).
H
N
O
N
O
R
O
N
H
2
N
HO
R
MeOH
HN
O
R
(25)
55–65%
Pt anode
rt
Under solvent-free conditions, Hamelin’s group has success-
fully oxidized β,β-disubstituted morpholino enamines into car-
bonyl compounds with Potassium Permanganate/Aluminum
Oxide using microwave irradiation (eq 26).
38
N
O
H
Ph
Ph
MW
O
N
O
H
O
R
2
R
1
(26)
Al
2
O
3
/KMnO
4
+
83%
Avoid Skin Contact with All Reagents
4
MORPHOLINE
Morpholine as a Base. For the most part, morpholine under-
goes chemical reactions typical of secondary amines, though the
presence of the electron-withdrawing ether renders it less nucle-
ophilic and less basic than other structurally similar amines. As
a matter of fact, morpholine (pKa
H
8.4) is a weaker base than
triethylamine (pKa
H
10.7) or piperidine (pKa
H
11.2) but stronger
than pyridine (pKa
H
5.2).
39
Thus, morpholine turns out to be the
best choice when mild basic conditions are required.
Morpholine has been successfully used as a base for vari-
ous reactions such as Wittig.
40
, Knoevenagel,
41
or Glaser.
42
In
the Glaser homo coupling, reaction occurs in the presence of a
catalytic amount of copper halide under microwave irradiation,
which is an improvement over the original method (eq 27). Mor-
pholine can also replace other bases such as triethylamine or
diisopropylamine in cross-coupling reactions.
43,44
MW
R
R
R
, Al
2
O
3
N
H
O
CuX
(27)
40–90%
The use of morpholine as a weak base in an unusual conversion
of α-halosulfones to olefins (Ramberg–Bäcklund rearrangement)
allows a facile preparation of dichloromethylene compounds with
interesting biological activities (eq 28).
45
N
H
O
SO
2
CCl
3
Cl
Cl
CHCl
3
(28)
rt
100%
New amine-supported resins have attracted growing interest
because they can provide attractive and practical methods for com-
binatorial chemistry and solid-phase synthesis in the preparation
of heterocycles and small molecules.
46,47
Interestingly, morpho-
line can be attached to a resin (polymer-supported morpholine or
PS morpholine) to act as an efficient proton scavenger in
aromatic nucleophilic substitution (S
N
Ar) for the synthesis of ben-
zodiazepines (eq 29).
48
CF
3
CO
2
–
O
2
N
F
N
O
R
2
R
1
O
NHR
3
+
H
3
N
DMF
O
2
N
N
H
N
O
R
2
R
1
O
NHR
3
(29)
PS morpholine
Cleavage of Fmoc- and Allyl-protecting Groups. As a weak
amine base, morpholine has been employed to lyse the Fmoc-
protecting group. It is mostly useful in peptide
49
or carbohydrate
synthesis.
50
Typically, treatment of the N-Fmoc-derivatized car-
bohydrate with morpholine in polar solvent (DMF, THF) provides
the free amine in average to high yields (eq 30).
51
O
HO
HO
OH
OH
FmocHN
H
N
O
OMe
O
O
HO
HO
OH
OH
H
2
N
H
N
O
OMe
O
N
H
O
, DMF
(30)
rt
quant
The allyl group has proven to be a very attractive protecting
group for carboxylic acids and phenols or as a carbamate for
amines and hydroxyls (allyloxycarbonyl (Alloc)). It can be used
in conjunction with N-terminal Z- and Boc-protecting groups and
can be removed selectively under a mild palladium-catalyzed pro-
cess with morpholine as the allyl scavenger.
52,53
Typically, Tetrakis(triphenylphosphine)palladium(0) as the
palladium catalyst coordinates with the alkene to provide a
π
-palladium complex. Morpholine as a nucleophile attacks the
complex at the least substituted terminus leading, after dissocia-
tion, to the free molecule and N-allylmorpholine. Due to the mild
conditions, this methodology has been applied routinely to cleave
allyl carboxylate
54,55
or phosphate
56
in peptide/glycopeptide
chemistry. The deprotection is compatible with sensitive pro-
tective groups (e.g. O-SEM (2-(trimethylsilyl)ethoxyethyl) or O-
TBDMS) or glycosyl serine and threonine bonds that are known
to be acid and base labile (eq 31).
57
Moreover, the procedure can
be employed in solid-phase synthesis to cleave polymer supports
connected to the peptide through an allylic handle.
58
O
BzO
BzO
OBz
O
NHCbz
O
O
Pd(PPh
3
)
4
N
H
O
O
BzO
BzO
OBz
O
NHCbz
OH
O
(31)
, THF
rt
97%
Decarboxylation might occur in the course of the deallylation
of allylic β-ketoester (eq 32)
59
or allylic alkyne ester.
60
How-
ever, using morpholine and a bidentate diphosphine ligand such
as [Pd
2
(dba)
3
]-dppp prevents decarboxylation (eq 33).
Pd(PPh
3
)
4
N
H
O
H
R
O
CHO
O
CO
2
All
H
R
O
CHO
O
(32)
, THF
63%
rt
A list of General Abbreviations appears on the front Endpapers
MORPHOLINE
5
Pd
2
(dba)
3
-dppp
N
H
O
O
TBSO
CO
2
All
C
5
H
11
TBSO
O
TBSO
CO
2
H
C
5
H
11
TBSO
(33)
, THF
83%
35
°C
Generally, the deprotection of phenoxyallyl
61
and N- or O-
Alloc
62
derivatives requires an excess of morpholine to avoid
competitive trapping of the allyl function by the free amine or
hydroxyl. Palladium Acetate may also be used as the catalyst in
conjunction with Triphenylphosphine as a ligand to increase the
electrophilic nature of the palladium complex (eq 34).
63
Furthermore, by using an equimolar quantity of morpholine,
combined with tetrakis(triphenylphosphine) palladium as cata-
lyst, it is possible to selectively cleave the allyl carboxylate
without hydrolyzing the Fmoc-protecting group (eq 35).
64
0.05 mol % Pd(OAc)
2
N
H
O
1 mol % PPh
3
NH
O
O
Ph
O
O
Ph
H
2
N
O
OH
(34)
, EtOH
85%
reflux
N
H
O
Pd(PPh
3
)
4
NHFmoc
OtBu
O
O
O
NHFmoc
OtBu
HO
(35)
, THF
70%
(1 equiv)
rt
Morpholine as a Scavenger. Morpholine can be successfully
used as a scavenger for other protecting group hydrolyses. Thus,
deprotection of phosphine borane adducts by morpholine yields
the free phosphine and the morpholino-borane adduct (eq 36). This
adduct can be easily removed under high vacuum
65
or by column
chromatography on alumina.
66
In a similar way, morpholinolysis
of xanthates gives the free thiol group in high yield (eq 37).
67
N
H
O
S
O
O
PCy
2
BH
3
S
O
O
PCy
2
(36)
quant
110
°C
N
H
O
S
S
O
R
(CH
2
)
10
R
HS
SH
(CH
2
)
10
(37)
75%
reflux
benzene
Morpholine in Heterocyclic Chemistry.
Morpholine can
be involved directly or as a base in different heterocycle-forming
processes. It has been employed for the synthesis of 2-aminothio-
phenes in the so-called Gewald synthesis. Molecules containing
such an aminothiophene moiety have a high incidence of biologi-
cal activity.
68,69
Typically, a one-pot thiolation–heterocyclization
reaction between carbonyl compounds with activated nitriles and
elemental sulfur in the presence of morpholine leads to 2-amino-
thiophenes in high yields (eq 38).
70
N
H
O
R
1
O
R
2
CN
CO
2
Et
EtOH
S
NH
2
CO
2
Et
R
2
R
1
(38)
70–80%
+
S
8
,
45–60
°C
During the last decade, a tethered Biginelli condensation
employing morpholinium acetate as an amine base has been
developed to access guanidine derivatives.
71
The stereoselectiv-
ity of the reaction is controlled by the reaction conditions and the
structure of the guanidine moiety. Thus, the condensation of mor-
pholino aminals (generated by ozonolysis of unsaturated acyclic
ureas) with benzyl acetoacetate gives a mixture of cis- and trans-
guanidine in good yields. Under standard Knoevenagel conditions
(morpholinium acetate, trifluoroethanol), cis-stereoselectivity is
observed, while under mineral acid treatment (PPE, DCM), the
trans
-isomer is favored. However, when the aminal substrates
contain an unprotected guanidine (X = NH
+
2
), only the trans-
isomer is obtained (eq 39). This remarkable result was applied
to the synthesis of various natural alkaloids.
72,73
Avoid Skin Contact with All Reagents
6
MORPHOLINE
N
N
HO
NH
2
X
O
O
CO
2
Bn
N
HO
N
H
X
CO
2
Bn
H
H
N
HO
N
H
X
CO
2
Bn
H
H
(39)
conditions
+
cis
trans
Conditions
X = O
X = NSO
2
Ar
X = NH
+
2
Morpholine-HOAc,
80%, 4:1
61%, 6:1
42%, trans
CF
3
CH
2
OH, 60
◦
C
(cis:trans)
(cis:trans)
PPE, DCM
80%, 1:4
61%, 1:20
N/A
(cis:trans)
(cis:trans)
Finally, triazines have been obtained with high regioselectiv-
ity from morpholino-ketoaminals upon condensation with amino-
guanidine in MeOH in the presence of acetic acid. The aminals are
generated by nucleophilic displacement of α,α-dibromoketones
with morpholine (eq 40).
74
N
H
O
THF
R
O
Br
Br
R
O
N
N
O
O
N
H
NH
NH
2
H
2
N
N
N
N
R
NH
2
(40)
MeOH, AcOH
45–76%
>95%
regioselectivity
45–70
°C
rt
70
°C
Morpholino Amides. Morpholino amides, obtained from the
reaction of morpholine with carboxylic acids, acyl chlorides, or
esters, react with both Grignard and organolithium reagents to
form ketones without contamination by tertiary alcohols.
75,76
Due
to the mild conditions, the configuration of the α-stereocenter
is retained (eq 41). Furthermore, the reaction is cleaner and
affords the final ketones in better yield compared to pyrrolidino
amides. The reaction is believed to proceed through a stable,
metal-chelated intermediate similar to the Weinreb amide
intermediate.
77
Like Weinreb amides, morpholino amides can also
be reduced with Lithium Aluminum Hydride to give clean α-
amino aldehydes (eq 42).
78
OBn
N
O
O
EtMgCl
THF
OBn
O
(41)
30 min, 0
°C
94%
BocHN
OH
O
HBTU, DIEA
N
H
O
BocHN
N
O
O
LiAlH
4
THF
BocHN
O
H
(42)
75%
, DCM
rt
85%
0
°C
Morpholine–Iodine Complex. Morpholine complexes with
iodine to give a charge transfer complex that is particularly handy
for the iodination of arenes, heteroarenes, and alkynes.
20,79
Pre-
pared as an isolable solid or in situ, it provides a reliable iodination
agent where other reagents failed. It is believed that, by complex-
ing with morpholine, the central iodine atom is activated to nucle-
ophilic attack. Various examples have been described in the liter-
ature such as iodination of phenols (eq 43),
80
simple alkynes,
81
or indoles.
82
Most of the reactions are performed in anhydrous
organic solvents (alcohols, DCM, benzene) as the complex is
water sensitive. However, if the complex is added portionwise over
a long period of time into an aqueous basic solution, iodination of
naphthoquinones proceeds smoothly in high yield (eq 44).
79
OMe
OMe
OH
MeO
2
C
N
H
O
DCM
OMe
OMe
OH
MeO
2
C
I
, I
2
rt
76%
(43)
N
H
O
O
O
OH
O
O
OH
I
, I
2
K
2
CO
3
, H
2
O
rt
87%
(44)
Reduction.
Morpholine has been employed as a catalyst
‘modifier’ for hydrogenation of labile halogenated stilbenes. In
conjunction with Pt or Rh metal, the risk of dehalogenation of the
aromatic ring is reduced (eq 45).
83
A list of General Abbreviations appears on the front Endpapers
MORPHOLINE
7
N
H
O
Br
NO
2
R
2
R
1
Br
O
2
N
R
2
R
1
EtOH/MeOH
82–98%
(45)
, 5% Rh/C
rt
Sodium Bis(2-methoxyethoxy)aluminum Hydride (SMEAH),
when modified with morpholine, is reported to reduce methyl
benzoate to benzaldehyde under mild conditions and in excel-
lent yields.
84
It is a good alternative to the diisobutylaluminum
hydride (DIBALH) reduction of esters to aldehydes. The method
can also be applied to the reduction of amides to the correspond-
ing aldehydes (eq 46).
85
No trace of reduced amine or alcohol is
observed.
N
H
O
O
O
CONMe
2
OH
R
O
O
CHO
OH
R
72%
(46)
–45
°C
SMEAH
, THF
Miscellaneous.
Morpholine has been reported as a ‘pro-
moter’ of the thionation of amides in conjunction with Lawesson’s
Reagent or Tetraphosphorous Decasulfide (eq 47). The nucleo-
philic properties of the morpholine are supposed to play a major
role in the breaking of P–S bonds, thereby leading to a more
powerful thionating agent.
86
N
N
Ph
O
O
Ph
N
N
Ph
S
S
Ph
N
H
O
, P
4
S
10
dioxane
reflux
85%
(47)
Interestingly, an organic catalyst designed around the morpho-
line ring promotes the enantioselective addition of diethylzinc
to aldehydes in up to 99% enantiomeric excess (eq 48). The
morpholine core plays a major role in controlling the enantios-
electivity of the reaction through the ether function.
87
The cata-
lyst can be obtained by addition of morpholine to trans-stilbene
oxide.
88
R
H
O
R
H
OH
Ph
OH
N
O
Et
2
Zn, Toluene
70–98%
(48)
5%
98–99% ee
rt
The
ring
opening
of
epoxides
to
the
corresponding
β
-chlorohydrins proceeds regio- and stereoselectively by the ac-
tion of 2,4,6-Trichloro-1,3,5-triazine (TCT) in H
2
O in the pres-
ence of morpholine.
89
This regio- and stereoselectivity is a func-
tion of the substituents that flank the epoxide. For example, the
ring opening of bicyclic epoxides gives the trans-chlorohydrins
exclusively (eq 49).
N
H
O
O
OH
Cl
N
N
N
Cl
Cl
Cl
(49)
, H
2
O
rt
98%
Access to pyrophosphate bonds can be achieved by coupling a
monophosphate derivative with a nucleotide in the presence of a
Lewis acid catalyst.
90
Prior to the coupling reaction, the appropri-
ate nucleotide monophosphate is activated to the corresponding
phosphoromorpholidate by treatment with morpholine, Dipyridyl
Disulfide, and Triphenylphosphine in DMSO (eq 50).
91
Then the
coupling is carried out in the presence of Manganese(II) Chloride
and Magnesium Sulfate (eq 51).
N
H
O
O
HO
OH
O
N
N
N
NH
O
P
O
–
O
O
–
Br
O
HO
OH
O
N
N
N
NH
O
P
O
N
O
–
Br
O
PPh
3
(50)
, DMSO
rt
92%
dipyridyl disulfide
The utilization of morpholine in the Mannich reaction has
gained interest during the last decades. Reaction of ketones, such
as N-methyltetrahydrocarbazole, with Formaldehyde in the pres-
ence of either a catalytic or a stoichiometric amount of morpholine
gives the corresponding α-methylene products (eq 52).
92
Avoid Skin Contact with All Reagents
8
MORPHOLINE
O
HO
OH
O
N
N
N
NH
O
P
O
N
OH
Br
O
O
HO
OH
O
N
+
H
2
NOC
P
O
OH
OH
HCONH
2
O
HO
OH
O
N
+
H
2
NOC
P
O
OH
O
O
HO
OH
O
N
N
N
NH
O
P
OH
Br
O
MnCl
2
–MgSO
4
(51)
rt
65%
+
N
H
O
AcOH
N
Me
O
N
Me
O
(52)
, HCHO
reflux
85%
Related Reagents. N-Chloromorpholine; 1-Cyclohexyl-3-(2-
morpholinoethyl)carbodiimide; 1-Cyclohexyl-3-(2-morpholino-
ethyl)carbodiimide
Metho-p-toluenesulfonate;
N,N
′
-Dicyclo-
hexyl-4-morpholinecarboximidamide; Diethyl Morpholinome-
thylphosphonate; Lithium Morpholide; N-Methylmorpholine
N
-Oxide; 2-Morpholinoethyl Isocyanide; N-Morpholinomethyl-
diphenylphosphine Oxide; Osmium Tetroxide–N-Methylmorpho-
line N-Oxide .
1.
Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals,
3rd ed.; Pergamon: Oxford, 1988; p 233.
2.
Carmack, M.; Spielman, M. A., Org. React. 1946, 3, 83.
3.
Newman, M. S.; Lowrie, H. S., J. Am. Chem. Soc. 1954, 76, 6196.
4.
Mayer, R.; Wehl, J., Angew. Chem., Int. Ed. Engl. 1964, 3, 705.
5.
Okuma, K.; Ikari, K.; Ohta, H., Chem. Lett. 1992, 131.
6.
Obayashi, M.; Kuzuna, S.; Noguchi, S., Chem. Pharm. Bull. 1979, 27,
1352.
7.
Stork, G.; Terrell, R.; Szmuszkovicz, J., J. Am. Chem. Soc. 1954, 76,
2029.
8.
Stork, G.; Landesman, H. K., J. Am. Chem. Soc. 1956, 78, 5128.
9.
Stork, G.; Schulenberg, J., J. Am. Chem. Soc. 1962, 84, 284.
10.
Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell, R.,
J. Am. Chem. Soc. 1963
, 85, 207.
11.
Cook, A. G. Enamines: Synthesis, Structure, and Reactions, 2nd ed.;
Dekker: New York, 1988; p 717.
12.
Hickmott, P. W., Tetrahedron 1982, 38, 1975.
13.
Hünig, S.; Lücke, E.; Brenninger, W., Org. Synth., Coll. Vol. 1973, 5,
808.
14.
Carlson, R.; Nilsson, A.; Strömqvist, M., Acta Chem. Scand. 1983, B37,
7.
15.
Stamos, I. K., Tetrahedron Lett. 1982, 23, 459.
16.
Vereshchagin, L. I.; Tikhonova, L. G.; Titova, E. I.; Latyshev, V. P.;
Gavrilov, L. D., Zh. Org. Khim. 1973, 9, 1355 (Chem. Abstr. 1973, 79,
91 899v).
17.
Keiko, N. A.; Rulev, A. Y.; Kalikhman, I. D.; Voronkov, M. G., Synthesis
1989, 446.
18.
Pattenden, G.; Robertson, G. M., Tetrahedron Lett. 1986, 27, 399.
19.
Bandodakar, B. S.; Nagendrappa, G., Synthesis 1990, 843.
20.
Southwick, P. L.; Kirchner, J. R., J. Org. Chem. 1962, 27, 3305.
21.
Oka, K.; Hara, S., Tetrahedron Lett. 1977, 695.
22.
Kotsuki, H.; Kobayashi, S.; Suenaga, H.; Nishizawa, H., Synthesis 1990,
1145.
23.
Raines, S.; Chai, S. Y.; Palopoli, F. P., J. Org. Chem. 1971, 36, 3992.
24.
Moghaddam, F. M.; Ghaffarzadeh, M., Synth. Commun. 2001, 31, 317.
25.
Moghaddam, F. M.; Ghaffarzadeh, M.; Dakamin, M. G., J. Chem. Res.
Synop. 2000
, 5, 228.
26.
Bauer, H.; Stier, F.; Petry, C.; Knorr, A.; Stadler, C.; Staab, H. A., Eur.
J. Org. Chem. 2001
, 3255.
27.
Alam, M. M.; Adapa, S. R., Synth. Commun. 2003, 33, 59.
28.
Venkateswarlu, S.; Panchagnula, G. K.; Guraiah, M. B.; Subbaraju, G.
V., Tetrahedron 2006, 62, 9855.
29.
Whitesell, J. K., In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: Oxford, 1991.
30.
Katritzky, A. R.; Pozharskii, A. F., Handbook of Heterocyclic Chemistry,
2nd ed.; Pergamon: Oxford, 2000; Vol. 248.
31.
Hammadi, M.; Villemin, D., Synth. Commun. 1996, 26, 2901.
32.
Rajender, V. S.; Rajender, D.; Sudhir, K., Tetrahedron Lett. 1997, 38,
2039.
33.
Willis, M. C.; Brace, G. N., Tetrahedron Lett. 2002, 43, 9085.
34.
Feng, X.; Edstrom, E. D., Tetrahedron 1999, 10, 99.
35.
Shulman, H.; Makarov, C.; Ogawa, A. K.; Romesberg, F.; Keinan, E., J.
Am. Chem. Soc. 2000
, 122, 10743.
36.
Williams, B. D.; Williams, B.; Bernardoni, F.; Finn, R. C.; Zubieta, J.,
Heterocycles 2001
, 55, 2199.
37.
Xu, D.; Chiaroni, A.; Fleury, M.-B.; Largeron, M., J. Org. Chem. 2006,
71
, 6374.
38.
Benhaliliba, H.; Derdour, A.; Bazureau, J.-P.; Texier-Boullet, F.;
Hamelin, J., Tetrahedron Lett. 1998, 39, 541.
39.
Hall, H. K., Jr., J. Am. Chem. Soc. 1957, 79, 5441.
40.
Azizian, J.; Mohammadizadeh, M. R.; Kazemizadeh, Z.; Karimi, N.;
Mohammadi, A. A.; Karimi, A. R.; Alizadeh, A., Lett. Org. Chem. 2006,
3
, 56.
A list of General Abbreviations appears on the front Endpapers
MORPHOLINE
9
41.
Percec, V.; Peterca, M.; Sienkowska, M. J.; Ilies, M. A.; Aqad, E.;
Smidrkal, J.; Heiney, P. A., J. Am. Chem. Soc. 2006, 128, 3324.
42.
Sharifi, A.; Mirzaei, M.; Naimi-Jamal, M. R., J. Chem. Res. Synop. 2002,
628.
43.
Inouye, M.; Itoh, M.-a. S.; Nakazumi, H., J. Org. Chem. 1999, 64, 9393.
44.
Inouye, M.; Fujimoto, K.; Furusyo, M.; Nakazumi, H., J. Am. Chem.
Soc. 1999
, 121, 1452.
45.
Braverman, S.; Zafrani, Y., Tetrahedron 1998, 54, 1901.
46.
Nakamura, Y.; Matsubara, R.; Kiyohara, H.; Kobayashi, S., Org. Lett.
2003, 5, 2481.
47.
Palacios, F.; Aparicio, D.; Ochoa de Retana, A. M.; de los Santos, J. M.;
Gil, J. I.; Lopez de Munain, R., Tetrahedron 2003, 14, 689.
48.
Tempest, P.; Pettus, L.; Gore, V.; Hulme, C., Tetrahedron Lett. 2003, 44,
1947.
49.
Wu, B. W.; David, J.; Chen, J.; Chen, G.; Hua, Z.; Danishefsky, S. J.,
Tetrahedron Lett. 2006
, 47, 5219.
50.
Peilstocker, K.; Kunz, H., Synlett 2000, 823.
51.
Schweizer, F.; Hindsgaul, O., Carbohydr. Res. 2006, 341, 1730.
52.
Guibè, F., Tetrahedron 1998, 54, 2967.
53.
Frost, C. G.; Howarth, J.; Williams, J. M. J., Tetrahedron 1992, 3, 1089.
54.
Garg, H. G.; von dem Bruch, K.; Hunz, H., Adv. Carbohydr. Chem.
Biochem. 1994
, 50, 277.
55.
Naegele, E.; Schelhaas, M.; Kuder, N.; Waldmann, H., J. Am. Chem. Soc.
1998, 120, 6889.
56.
Whalen, L. J.; McEvoy, K. A.; Halcomb, R. L., Bioorg. Med. Chem. Lett.
2003, 13, 301.
57.
Hunz, H.; Waldmann, H., Angew. Chem., Int. Ed. Engl. 1984, 23, 71.
58.
Kunz, H.; Dombo, B., Angew. Chem., Int. Ed. Engl. 1988, 27, 711.
59.
Trudeau, S.; Deslongchamps, P., J. Org. Chem. 2004, 69, 832.
60.
Okamoto, S.; Ono, N.; Tani, K.; Yoshida, Y.; Sato, F., J. Chem. Soc.,
Chem. Commun. 1994
, 279.
61.
Xu, B.; Pelish, H.; Kirchhausen, T.; Hammond, G. B., Org. Biomol.
Chem. 2006
, 4, 4149.
62.
Carvalho de Souza, A.; Halkes, K. M.; Meeldijk, J. D.; Verkleij, A. J.;
Vliegenthart, J. F. G.; Kamerling, J. P., Eur. J. Org. Chem. 2004, 4323.
63.
Mittendorf, J.; Benet-Buchholz, J.; Fey, P.; Klaus-Helmut, M., Synthesis
2003, 136.
64.
Zhang, X.; Ni, W.; van der Donk, W. A., J. Org. Chem. 2005, 70, 6685.
65.
Roelle, T.; Grubbs, R. H., Chem. Commun. 2002, 1070.
66.
Maienza, F.; Spindler, F.; Thommen, M.; Pugin, B.; Malan, C.; Mezzetti,
A., J. Org. Chem. 2002, 67, 5239.
67.
Chan, T.-L.; Hung, C.-W.; Man, T.-O.; Leung, M.-K., J. Chem. Soc.,
Chem. Commun. 1994
, 1971.
68.
Sabnis, R. W.; Rangnekar, D. W.; Sonawane, N. D., J. Heterocycl. Chem.
1999, 36, 333.
69.
Sabnis, R. W., Sulfur Rep. 1994, 16, 1.
70.
Pietsch, M.; Guetschow, M., J. Med. Chem. 2005, 48, 8270.
71.
Aron, Z. D.; Overman, L. E., Chem. Commun. 2004, 253.
72.
Cohen, F.; Overman, L. E., J. Am. Chem. Soc. 2006, 128, 2594.
73.
Aron, Z. D.; Overman, L. E., J. Am. Chem. Soc. 2005, 127, 3380.
74.
Limanto, J.; Desmond, R. A.; Gauthier, D. R. Jr.; Devine, P. N.; Reamer,
R. A.; Volante, R. P., Org. Lett. 2003, 5, 2271.
75.
Martin, R.; Romea, P.; Tey, C.; Urpi, F.; Vilarrasa, J., Synlett 1997, 1414.
76.
Sengupta, S.; Mondal, S.; Das, D., Tetrahedron Lett. 1999, 40, 4107.
77.
Nahm, S.; Weinreb, S. M., Tetrahedron Lett. 1981, 39, 3815.
78.
Douat, C.; Heitz, A.; Martinez, J.; Fehrentz, J.-A., Tetrahedron Lett.
2000, 41, 37.
79.
Perez, A. L.; Lamoureux, G.; Herrera, A., Synth. Commun. 2004, 34,
3389.
80.
Kozhinov, D. V.; Behar, V., J. Org. Chem. 2004, 69, 1378.
81.
Paquette, L. A.; Chang, J.; Liu, Z., J. Org. Chem. 2004, 69, 6441.
82.
Yamada, F.; Fukui, Y.; Iwaki, T.; Ogasawara, S.; Okigawa, M.; Tanaka,
S.; Somei, M., Heterocycles 2006, 67, 129.
83.
Jorgensen, T. K.; Andersen, K. E.; Lau, J.; Madsen, P.; Huusfeldt, P. O.,
J. Heterocycl. Chem. 1999
, 36, 57.
84.
Kanazawa, R.; Tokoroyama, T., Synthesis 1976, 526.
85.
Tian, X.; Hudlicky, T.; Koenigsberger, K., J. Am. Chem. Soc. 1995, 117,
3643.
86.
Poupaert, J. H.; Carato, P.; McCurdy, C. R., Lett. Org. Chem. 2005, 2,
330.
87.
Nugent, W. A., Org. Lett. 2002, 4, 2133.
88.
Sola, L.; Reddy, K. S.; Vidal-Ferran, A.; Moyano, A.; Pericas, M. A.;
Rieras, A.; Alvarez-Larena, A.; Piniella, J.-F., J. Org. Chem. 1998, 63,
7078.
89.
Das, B.; Venkateswarlu, K.; Krishnaiah, M., Helv. Chim. Acta 2007, 90,
149.
90.
Lee, J.; Churchil, H.; Choi, W. B.; Lynch, J. E.; Roberts, F. E.; Volante,
R. P.; Reider, P. J., Chem. Commun. 1999, 729.
91.
Wagner, G. K.; Guse, A. H.; Potter, B. V. L., J. Org. Chem. 2005, 70,
4810.
92.
Kim, M. Y.; Lim, G. J.; Lim, J. I.; Kim, D. S.; Kim, I. Y.; Yang, J. S.,
Heterocycles 1997
, 45, 2041.
Avoid Skin Contact with All Reagents