zestaw05 Liniowa niezal baza

background image



     ! "$#&%(') +*

,-./102%3%3$  "$#&%() 425

63798;:=<

(V, K, ⊕, ∗)

>@?BADC

798.EDF

C

8BGIHJF

C

8BKD79LNM28BOPHRQSFRQTM$L-K U

A

:B79UWVX8;Y

K

Z

[\8B]B8;^97_KD7`8

>@?BADC

798aEbQTM7`8

ADC

7cU\KD87`K U\:

C

8d;e

>b?;ADC

7`8BY&fNEgF

C

fhdiYjQTM(U\kleg];8

(V, ⊕, ∗)

di8;GiH

EDF

C

8BGiHRF

C

8BKD79LjM28BOPHJQSFiQTM(LjK U

A

:B7cUmVX8BYn^97`:

CB>

F

C

8;:

C

fmM7`GiHfW:=<

Z

oqpPrtsvuxw=yBz|{ }

63798;:=<

α

1

, α

2

, . . . , α

n

∈ K

e

v

1

, v

2

, . . . , v

n

∈ V

Z

~8;OmHRQSF

1

∗ v

1

) ⊕ (α

2

∗ v

2

) ⊕ · · · ⊕ (α

n

∗ v

n

)

K U

C

fmM$U\Y&f€Pƒ‚j„B…X†@‡WˆŠ‰;‹ŒŽ…X† …ƒ‹

M$8;OmHRQSFR‘TM

v

1

, v

2

, . . . , v

n

QMGRE@‘VX:

C

fWKDKD7`OlUl:=<

α

1

, α

2

, . . . , α

n

Z

’

C

K U\:

C

8BKg798\“

1

∗ v

1

) ⊕ (α

2

∗ v

2

) ⊕ · · · ⊕ (α

n

∗ v

n

) ≡

n

L

i=1

α

i

∗ v

i

oqpPrtsvuxw=yBz”/}

•–‘TM79Y&f\e];83M28BOPHJQSFIf

v

1

, v

2

, . . . , v

n

∈ V

GJLjŒŽ…X† …ƒ$&† …—R˜T‡\Œ9—R™B†—še;di8;]B8;^97_GRE@8ƒVcKD79QSKDU

di8BGiHa7`Y-ED^`79OƒU\:dRUg“

∀α

1

, α

2

, . . . , α

n

∈ K

n

M

i=1

α

i

∗ v

i

= ~0 =⇒ α

1

= α

2

= · · · = α

n

= 0

!

›a~œažœ

Ÿ\“

~0

HJQ M28BOPHJQSF

C

8;FRQTM)f¡M¢EDF

C

8BGIHJF

C

8BKg7

V

eKDE

Z

M£EDF

C

fEDU

A

Om¤

R

n

Y-QS];8¥Q

C

K U\:

C

U\k

(0, . . . , 0)

eM¦EDF

C

8BGiHRF

C

8BKD7¨§Š¤DKgO\:di7vHJQ

>@?BADC

798¥§Š¤DKDOl:dRU©HJQ\]BGJUlY-QSª«

:B79QTM2Q–Fi‘TMK U

C

8BFR¤­¬xQ

C

K U\:

C

U\^`79ªRYfjdRL®EDF

C

8

C

θ

¯°Z

63UlHJQSYj7cUlGiH

0

evOPHJ‘\FR8M)fWGiH

?

ED¤ƒdi8

M"K U\GIH

?

EDKD79Om¤–79YjED^97`OlUl:di7 HJQ

C

8;FRQjGROƒU\^9U\FRKD8

C

:;7cUWVXU

K

Z

›a~œažœ²±W“~³U\Fi¤DKD8;O^979Kg79QTM$8dKD798

C

U\^`8B]BKgQSªR:;7´M28BOPHRQSFR‘TMµM¶G

C

:

C

8;·S‘S^9KPfWY¸EDF

C

fP«

E U

A

Om¤F

C

8;:

C

fWM7`GiHR8dEDF

C

8;GiHJF

C

8;KD7WM28BOPHRQSFRQTM28d

C´A

Q

A

UhM(UlKD798;Yº¹E@Q)MGRE@‘VXF

CB?;A

KPf:=<W»

7¼Y-KDQ\]B8BKg79¤qEDF

C

8

C

GROƒU\^9U\F)K UNOƒU\]

A

8d)MGiEb‘VcF

C;?BA

KD8dY-UEbQSGIH=U\k

∀α

1

, α

2

, . . . , α

n

∈ R



α

1

v

1

+ α

2

v

2

+ · · · + α

n

v

n

= ~0 =⇒ α

1

= α

2

= · · · = α

n

= 0



[\8;]B8B^`7

V

di8BGIH¨EDF

C

8BGIHJF

C

8BKg7cLKD7`8BGROlQS½D:

C

8BKg798$M)fWYj7cU\FiQ¾M$L¥¬ŠKDE

Z

EDF

C

8BGiHRF

C

8B½M798;^9Ql«

Y-79U\KD‘TM

¯

eHRQ|E@QTM)fW]BG

C

U

A

8š¿ KD79:dRU

>@?BADC

798ÀKD7`8;M)fWGiHJU\FR:

C

U¾dRL\:BU

A

Q

CBA

8š¿ KD7`Q¾M$U\KD79U

M­KD7`8d

>

U

C

f

Z

•–¤gGR79Yf&M798

ADC

7`8BkleP:BQHJQ

C

K U\:

C

fSem]B8KD7`8BGiO\QS½D:

C

QSKPf¤gO VXU

A

M$8;OmHRQSFR‘TM

di8BGiHa^`79KD7`Q¾M2QKD7`8

C

Ul^98B];KPf

ZÁ

FRQSGIHJ8.¤DQS·S‘\^9KD7`8BKD7`8E@Q

A

UTdi8KDU\GiH

?

ED¤ƒdRLl:hU

A

8;¿ Kg79:dRU“

oqpPrtsvuxw=yBzÂ/}

63798;:=<

V

>@?BADC

798.KD7`8BGROlQS½D:

C

8BKg798.M)fYj7cUlFRQTM(LEDF

C

8;GiHJF

C

8;KD7cLM$8;OPHJQSFiQ¾M$L

Z

›3ODVŠU

A

M28BOPHJQSFi‘TM

{v

1

, v

2

, v

3

, . . .

} = {v

i

}


i=1

K U

C

fmM$U\Y&fÃ^`79KD7`QTM$QKg798

C

U\^98;]BKPfWY–e

di8BªR^`7POƒU\]

A

fdi8B·SQaGROlQS½D:

C

QSKPfEbQ

ADCB>

79‘SFdi8;GiH^97`KD79QTM2Q)KD798

C

U\^`8B]BKPfMGR8;KDGR7`8

A

8;¿ KD7`:di7W±

Z

background image



— ‡\ 



…X† …ƒ‡j† …—R˜T‡\Œ9—R™B†$—=€ƒ



‡T˜T‡

±

oqpPrtsvuxw=yBz}

~8;OmHRQSFif

v

1

, v

2

, . . . , v

n

∈ V

KDU

C

fmM$U\Y&f

ŒŽ…X† …ƒ$˜T‡\Œ9—R™B†! l‚…Xe;di8;]B8B^`7_KD798aGJL^979Kg79QTM$Q

KD798

C

U\^`8B]BKg8

Z

"#

uxp%$&('PpWsuxp

{³¬ŠOmFifmHJ8;FR79¤gY²^97`KD79QTM28d$KD798

C

U\^`8B];KDQSªR:;7/M

R

n

¯

}

~8;OmHRQSFif

v

1

, v

2

, . . . , v

n

∈ R

n

GJL

^979Kg79QTM$Q®Kg798

C

U\^98;]BKD8M)HR8

A

f

7¨HfW^9OlQ–M)HJ8

A

fSev·

A

f

M)f

C

K U\:

C

KD7`O@e@OPHJ‘SFi8B·SQNOlQS^9¤DYjK U\Yj7GRLNM28BOPHRQSFif

v

i

eldi8;GiHaFR‘S];KPf®Q

A*)gZ

›a~œažœ&“

Á

QTM)f];G

C

8-OmFifmHR8BFR7`¤DY1M2QS^`KDQ©GiHRQSGRQTM$U\kHfW^9O\Q©M)HR8

A

f\e¼·

A

f

>

U

A

U\Yf

^`7

«

KD79Q\M$L)KD798

C

U\^`8B];KDQSªRk¨M28BOPHRQSFR‘TMM

79^`QSªR:;7lFi‘TMKD8d/M)fYj7cUlFRQTM7\FiQ

C

M$U\]hUlKD8d¼EDF

C

8BGiHRF

C

8BKD7

Z

oqpPrtsvuxw=yBz,+/}

•–‘TM79Y&f\e]B8

M28BOPHRQSFif

v

1

, v

2

, . . . , v

n

∈ V

-

—š†—/.š‰;‹ÀEDF

C

8BGIHJF

C

8B½

V

e2di8B]B8;^97

A

^9U

A

QTM$QS^`KD8B·\QºM28BOPHJQ\FJU

v

∈ V

79GIHJKD7`8dRL

GROƒU\^9U\Fif

α

1

, α

2

, . . . , α

n

∈ R

HJU\Om798\e];8

v

= α

1

v

1

+ α

2

v

2

+ · · · + α

n

v

n

Z

oqpPrtsvuxw=yBz,0/}

›3ODVŠU

A

M28BOPHRQSFR‘TM

{v

1

, v

2

, . . . , v

n

} ⊂ V

K U

C

fWM$U\Y&f

„=‡T˜T‹

EDF

C

8BGIHJF

C

8BKD7

V

M)HJ8

A

f

7@HfW^9OlQ¥M)HJ8

A

fSe·

A

fdi8BGiH$QSK©¤DODVXU

A

8BY+M28BOPHJQSFi‘TM

^`79KD7`Q¾M2QKD798

C

U\^`8B]BKPfW:=</e·S8BKD8;FR¤ƒdRL¾«

:;fW:=<EDF

C

8BGIHJF

C

8B½

V

Z

"#

uxp%$&('PpWsuxp

”/}

~

OƒU\]

A

8dEgF

C

8;GiHRF

C

8;KD7M$8;OmHRQSFRQTM28d

V

7`GiHJKg798di8

>

U

C

U

Z

oqpPrtsvuxw=yBz21b}

[\8BªR^`72M28BOPHJQ\F

v

∈ V

Y

UqM

>

U

C

7`8

{v

1

, v

2

, . . . , v

n

}

EDF

C

8

A

GiHJUTM7`8BKD7`8

v

= α

1

v

1

+

α

2

v

2

+· · ·+α

n

v

n

eTHRQ)GROƒU\^cUlFif

α

1

, α

2

, . . . , α

n

KDU

C

fmM$U\Y&f3 54!67i˜8:9\†! l‚…g$—=€i‡

v

M

>

U

C

798

{v

i

}

i=1,...,n

"#

uxp%$&('PpWsuxp

Â/}

~

OƒU\]

A

8dNEgF

C

8;GiHRF

C

8;KD7a8B¤DOm^97

A

8BGiQTM$8d

R

n

79GiHRKD798dRL

>

U

C

f³QSFiHRQS·SQSK Ul^9K U7(Q\FiHJQ\KDQSFI«

Y

U\^`K U

Z

background image



— ‡\ 



…X† …ƒ‡j† …—R˜T‡\Œ9—R™B†$—=€ƒ



‡T˜T‡

¨z!&z svuŠz



z!&z suxp { }



§ŠQSFRY&¤bVX¤ƒdtM$U\FR¤DKg8BO^97`KD79QTM28d

C

U\^98;]BKDQSªi:B7 M28BOPHJQSFi‘TM­M

A

Q¾M2QS^`KD8d

EDF

C

8BGiHRF

C

8BKD7 M28BOS«

HJQSFiQ¾M28d

V

Z



z!&z suxp

”/}



>

U

A

U\k.^`79KD7`Q¾M$L&KD7`8

C

U\^98;]BKDQSªikM$8;OmHRQSFR‘TM"M

Q

A

EbQTM798

A

KD7`8d(EDF

C

8BGiHRF

C

8BKD7

“

U

¯

u

1

= 2, u

2

= −3



>_¯

w

1

= (3, 1), w

2

= (−2, 1)



:

¯

v

1

= (−1, 2), v

2

= (2, 6), v

3

= (3, 2)



A_¯

z

1

= (1, 1, −2), z

2

= (3, 1, 0), z

3

= (−1, 2, 1)

Z



z!&z suxp

Â/}

U\K Udi8BGIH3EgF

C

8;GiHRF

C

8;½

M28BOPHJQSFiQTM(U

(R

2

, R, ⊕, ∗)

eg·

ADC

7`8

(x

1

, x

2

) ⊕ (y

1

, y

2

) := (x

1

+ y

1

+ 1, x

2

+ y

2

)

α

∗ (x

1

, x

2

) := (αx

1

+ α − 1, αx

2

)



>

U

A

U¾d)^97`KD79QTM$L&KD798

C

U\^`8B];KDQSªRkM28BOPHJQ\FR‘TM.“

U

¯

(2, 1)

e

(4, 2)

>_¯

(2, 1)

e

(5, 2)



z!&z suxp

}

~

EDF

C

8BGIHJF

C

8BKD7¡M28BOPHJQSFiQTM$8d

R

3

M

>

U

C

798

OƒU\KDQSKg79:

C

KD8d

A

U\KD8

GRL

M28BOPHJQSFIf@“

z

1

= (1, 1, −2)

e

z

2

= (3, 1, 0)

e

z

3

= (−1, 2, 1)

Z



EgFJUhM

ADC

7`k\e(:

C

fÃHR8

M28BOPHJQ\Fif

HM$QSF

C

L

>

U

C;?

R

3

Z

[\8;ªR^`7gH=U\O_e

C

KDU\^98Bk(MGRE@‘VcF

CB?;A

KD8M$8;OPHJQSFRU

z

= (1, −3, −3)

M

HJ8d

>

U

C

7`8

Z



z!&z suxp+/}

~

EDF

C

8BGIHJF

C

8BKD7¡M28BOPHJQSFiQTM$8d

R

4

M

>

U

C

798

OƒU\KDQSKg79:

C

KD8d

A

U\KD8

GRL

M28BOPHJQSFIf@“

v

1

= (1, 2, 1, −2)

e

v

2

= (2, 3, 0, −1)

e

v

3

= (1, 2, 1, 3)

e

v

4

= (1, 3, −1, 0)

Z



EDFJUhM

ADC

79kle];8®di8;GiH

HJQ

>

U

C

U

HJ8dqEDF

C

8;GiHJF

C

8;KD7

Z

K Ul^98;kMGRE@‘VXF

CB?BA

KD8

M28BOPHJQ\FJU

v

= (7, 14, −1, 1)

M

HR8d

>

U

C

7`8

Z



z!&z suxp0/}

›3ODVŠU

A

M28BOPHJQ\FR‘TM

{v

1

, v

2

, v

3

}

HM$QSF

C

f

>

U

CB?

EDF

C

8BGIHJF

C

8BKg7SM$8;OmHRQSFRQTM28d

R

3

Z



EDFJUhM

ADC

79kle

:

C

fº¤DODVXU

A

M28BOPHJQSFi‘TM

{v

0

1

, v

0

2

, v

0

3

}

e·

ADC

7`8

v

0

1

= v

1

− v

2

e

v

0

2

= v

1

+ v

2

+ v

3

e

v

0

3

= 2v

1

− v

2

− v

3

emdi8;GiH

>

U

C

L-HR8dEDF

C

8BGIHJF

C

8BKg7

Z

[\8Bªi^97H=U\O_e

C

K U\^`8BkMGRE@‘VXF

CB?BA

KD8

M$8;OmHRQSFJU

v

= 3v

1

+ 4v

2

+ 3v

3

M"KDQTM28d

>

U

C

7`8

Z

background image



— ‡\ 



…X† …ƒ‡j† …—R˜T‡\Œ9—R™B†$—=€ƒ



‡T˜T‡



z!&z suxp,1b}

~

EgF

C

8;GiHRF

C

8;KD7

R

2

[x]

¬xEDF

C

8BGIHJF

C

8BKg7DM798B^`QSYj7cU\KD‘TMGiHJQ\EDKD7cU3:BQK U¾dIM)fW];8d

A

FR¤D·\798B·\Q

¯

“

U

¯©CB>

U

A

U\k

^`79KD7`QTM(LqKD798

C

U\^`8B];KDQSªRkNM28BOPHJQSFi‘TM

u

1

(x) = 1 + x

e

u

2

(x) = 1 − x

e

u

3

(x) = 1 + x + x

2



>_¯

M)fWOlU

C

U\kle@];8HM$QSF

C

LNQSKD8

>

U

C;?

HJ8d)EDF

C

8BGIHJF

C

8BKD7



:

¯®C

K Ul^98;kMGRE@‘VXF

CB?BA

KD8M28BOPHRQSFJU

u

(x) = x

2

+ 2x + 1

M

HJ8d

>

U

C

798

Z



z!&z suxp/}

QSFiHRQSKDQSFiY

U\^`7

C

Q¾M$U\k

>

U

CB?

“

U

¯

v

1

= (1, 1, 1), v

2

= (1, 1, 0), v

3

= (1, 0, 0)

>_¯

v

1

= (0, 1, 0, 1), v

2

= (0, 3, 0, −1), v

3

= (3, 2, 1, 0), v

4

= (0, −3, 1, 2)



z!&z suxp/}

K U¾d

A



>

U

C;?

EDF

C

8BGiHRF

C

8BKD7

V

= {(x − 5y, x + y, 2x + y, x + y) ∈ R

4

: x, y ∈ R}

U

¯

QSOmFR8;ªR^¼M)fWY-79U\F(EDF

C

8BGIHJF

C

8BKg7

V



>_¯

EbQ

A

U¾d

A

M$UNM28BOPHRQSFif\e

C

OPHJ‘\FifWY-7¼¤HM$QSF

C

fqQSKDU

>

U

CB?

EDF

C

8BGIHJF

C

8BKg7

R

4



:

¯®A

QSOlQSK U¾dvdi8dQ\FiHJQ\·SQSK U\^`7

C

U\:di7



A_¯®A

QSOlQSK U¾dvdi8dQ\FiHJQ\KDQSFRY-U\^`7

C

Ul:di7



8

¯®C

K UTd

A



MGRE@‘VXF

CB?BA

KD8

M$8;OmHRQSFJU

v

= (−2, 4, 7, 4)

M

C

K Ul^98

C

79QSKg8d

>

U

C

798

QSFIHJQSKDQ\FI«

Y

Ul^9KD8d

Z


Wyszukiwarka

Podobne podstrony:
zestaw05 Liniowa niezal baza
54 UE FIR L2 zad 5 7 ALGEBRA lin niezależność, baza
Algebra 1 03 wymiar i baza przestrzeni liniowej
Zestaw 12 Macierz odwrotna, układy równań liniowych
Zestaw uklady rownan liniowych
Zestaw 4-Równania liniowe pierwszego rzedu
Programowanie liniowe 2011 (egzamin termin 2 zestaw 2)
zadania wanat, zestaw układy równań liniowych
Zestaw 4 Równania liniowe pierwszego rzedu
Zestaw 1 Funkcja kwadratowa Funkcja homograficzna Równanie liniowe
Algebra 1 03 wymiar i baza przestrzeni liniowej
Zestaw 12 Macierz odwrotna, układy równań liniowych
zestaw nr 2

więcej podobnych podstron