Matematyka Ogólna, RMT
2010/2011, sem. zimowy
Funkcje cyklometryczne
Zad.1. Wyznaczyć dziedzinę danej funkcji:
(1) f (x) =
√
− log cos x,
(2) f (x) =
√
1−x
2
2
x
−4
,
(3) f (x) =
log x·
√
tg x
x
2
+3x+5
,
(4) f (x) =
√
log(2x
2
−8)
3−3
x
,
(5) f (x) = 10
2
3 arcsin x
,
(6) f (x) = 2 − arccos 2x − 1,
(7) f (x) = ln
√
1 − sin 2x,
(8) f (x) = ln
q
1
2
− cos 3x,
(9) f (x) =
arcsin(2−x)
x
2
−4x+4
,
(10) f (x) = arcsin
√
3x,
(11) f (x) =
parccos(2x + 1),
(12) f (x) = arcsin
q
x+1
x
,
(13) f (x) =
q
ln
2x
x−1
,
(14) f (x) = ln
q
3x−4
4x+3
,
(15) f (x) = arcsin
3
(ln x + 5),
(16) f (x) =
1
arccos(1−ln x)
,
(17) f (x) =
p√
2x − 3,
(18) f (x) =
p
5 −
√
5 − x,
(19) f (x) = arcsin(x − 1),
(20) f (x) = arccos(
3x−1
2
),
(21) f (x) = arctg(12 −
2x
√
x
2
+1
),
(22) f (x) = arccos(x
2
− 4),
(23) f (x) = arcsin
x−3
x−4
,
(24) f (x) = arccos
2−x
x−5
,
(25) f (x) =
q
arcsin(x +
1
3
),
(26) f (x) =
1
arccos
x
2
,
(27) f (x) =
√
x+4
arcsin
x−2
6
,
(28) f (x) =
2
√
3x+1
+ arctg
1
x
.
(29) f (x) = ln(4x − 3) + arcsin
x+2
4
.
Zad.2. Obliczyć:
(1) 3 arcsin 1 − 2 arccos 0,
(2) 4arctg1 − arcctg(−1),
(3)
1
2
arccos
√
3
2
+ arctg(−
√
3),
(4) arcctg
√
3 − 3 arcsin
√
2
2
,
(5) 2 arccos(−
1
2
) − arctg1,
(6) arctg
√
3
3
− 2 arcsin
1
2
,
(7) cos(3 arcsin
√
3
2
+ arccos(−
1
2
)).
Zad.3. Naszkicować wykresy funkcji:
(1) f (x) = arcsin(x − 3),
(2) f (x) = arccos(x + 2),
(3) f (x) = arctgx +
π
2
,
(4) f (x) = arcctgx − 1,
(5) f (x) = 2arcctgx,
(6) f (x) = −arctgx.
1