Matematyka Ogólna, RMT

2010/2011, sem. zimowy

Funkcje cyklometryczne Zad.1. Wyznaczyć dziedzinę danej funkcji:

√

(1) f (x) =

− log cos x,

(11) f (x) = parccos(2x + 1), (20) f (x) = arccos( 3x−1 ), 2

√

(2) f (x) =

1−x2 ,

q x+1

(21) f (x) = arctg(12 −

2x

√

),

2x−4

(12) f (x) = arcsin

,

x2+1

√

x

(3) f (x) = log x· tg x , x2+3x+5

q

(22) f (x) = arccos(x2 − 4),

√

(13) f (x) =

ln 2x ,

x−1

log(2x2−8)

(4) f (x) =

,

(23) f (x) = arcsin x−3 , 3−3x

x−4

q 3x−4

2

(14) f (x) = ln

,

(5) f (x) = 10

4x+3

3 arcsin x ,

(24) f (x) = arccos 2−x , x−5

(6) f (x) = 2 − arccos 2x − 1, (15) f (x) = arcsin3(ln x + 5), q

√

(25) f (x) =

arcsin(x + 1 ),

3

(7) f (x) = ln

1 − sin 2x,

(16) f (x) =

1

,

arccos(1−ln x)

q

√

(26) f (x) =

1

,

(8) f (x) = ln

1 − cos 3x,

p

arccos x

2

2

(17) f (x) =

2x − 3,

√

√

(27) f (x) =

x+4

,

(9) f (x) = arcsin(2−x) , p

(18) f (x) =

5 −

5 − x,

arcsin x−2

x2−4x+4

6

√

(10) f (x) = arcsin

3x,

(19) f (x) = arcsin(x − 1), (28) f (x) =

2

√

+ arctg 1 .

3x+1

x

(29) f (x) = ln(4x − 3) + arcsin x+2 .

4

Zad.2. Obliczyć:

(1) 3 arcsin 1 − 2 arccos 0, (5) 2 arccos(− 1 ) − arctg1, 2

(2) 4arctg1 − arcctg(−1),

√

√

√

(6) arctg 3 − 2 arcsin 1 , (3) 1 arccos

3 + arctg(− 3),

3

2

2

2

√

√

√

(4) arcctg 3 − 3 arcsin

2 ,

(7) cos(3 arcsin

3 + arccos(− 1 )).

2

2

2

Zad.3. Naszkicować wykresy funkcji: (1) f (x) = arcsin(x − 3), (3) f (x) = arctgx + π ,

(5) f (x) = 2arcctgx,

2

(2) f (x) = arccos(x + 2), (4) f (x) = arcctgx − 1,

(6) f (x) = −arctgx.

1