Opracował: dr in
ż
. Mariusz Leus
- 1 -
T: Wytrzymało
ść
zło
ż
ona – zginanie i skr
ę
canie
Zadanie 1.
Wykorzystuj
ą
c hipotez
ę
Hubera obliczy
ć
ś
rednic
ę
d wału na którym osadzone s
ą
dwa koła pasowe
1 i 2 o
ś
rednicy D
1
= 100 mm i D
2
= 400 mm oraz ci
ęż
arze G
1
= 200 N i G
2
= 500 N. Wał przenosi
moc N = 52.36 kW przy pr
ę
dko
ś
ci n = 500 obr/min. Wykona
ć
wykresy momentów gn
ą
cych,
skr
ę
caj
ą
cych i zredukowanych. Przyj
ąć
k
z
= 120 N/mm
2
. Rozmieszczenie sił przyj
ąć
jak na rys.
Dane: D
1
= 100 mm, D
2
= 400 mm, G
1
= 200 N, G
2
= 500 N, N = 52.36 kW, n = 500 obr/min,
a = 0.1 m, k
z
= 120 N/mm
2
Szukane: d = ?
Opracował: dr in
ż
. Mariusz Leus
- 2 -
1. Moment skr
ę
caj
ą
cy M
S
n
N
M
S
⋅
=
3
,
9549
Nm
1000
500
36
.
52
3
,
9549
=
⋅
=
S
M
Nm
1000
=
S
M
2. Sił P
1
i P
2
na kole 1 i 2
2
2
2
2
1
1
D
P
D
P
M
S
⋅
=
⋅
=
kN
20
N
20000
1
.
0
1000
2
2
1
1
=
=
⋅
=
=
D
M
P
S
kN
20
1
=
P
kN
5
N
5000
4
.
0
1000
2
2
2
2
=
=
⋅
=
=
D
M
P
S
kN
5
2
=
P
3. Zginanie w płaszczy
ź
nie Axy
Reakcje w ło
ż
yskach A i B w płaszczy
ź
nie Axy:
a)
∑
=
0
A
M
;
(
)
0
4
3
2
2
1
=
⋅
−
⋅
+
+
⋅
a
R
a
G
P
a
G
By
(
)
(
)
4
.
0
3
.
0
500
5000
1
.
0
200
4
3
2
2
1
⋅
+
+
⋅
=
⋅
+
+
⋅
=
a
a
G
P
a
G
R
By
N
4175
=
By
R
b)
∑
=
0
B
M
;
(
)
0
3
4
2
2
1
=
⋅
+
−
⋅
−
⋅
a
G
P
a
G
a
R
Ay
(
)
(
)
4
.
0
1
.
0
500
5000
3
.
0
200
4
3
2
2
1
⋅
+
+
⋅
=
⋅
+
+
⋅
=
a
a
G
P
a
G
R
Ay
N
1525
=
Ay
R
Momenty gn
ą
ce w płaszczy
ź
nie Axy:
Nm
0
=
A
y
g
M
Nm
5
.
152
1
0
1525
1
.
0
1
=
⋅
=
⋅
=
.
R
M
Ay
y
g
Nm
5
.
417
1
.
0
4175
1
.
0
2
=
⋅
=
⋅
=
By
y
g
R
M
Nm
0
=
B
y
g
M
4. Zginanie w płaszczy
ź
nie Axz
Reakcje w ło
ż
yskach A i B w płaszczy
ź
nie Axz:
a)
∑
=
0
A
M
;
0
4
1
=
⋅
−
⋅
a
R
a
P
Bz
4
.
0
1
.
0
20000
4
1
⋅
=
⋅
=
a
a
P
R
Bz
N
5000
=
Bz
R
b)
∑
=
0
B
M
;
0
3
4
1
=
⋅
−
⋅
a
P
a
R
Az
4
.
0
3
.
0
20000
4
3
1
⋅
=
⋅
=
a
a
P
R
Az
N
15000
=
Az
R
Opracował: dr in
ż
. Mariusz Leus
- 3 -
Momenty gn
ą
ce w płaszczy
ź
nie Axz:
Nm
0
=
A
z
g
M
Nm
1500
1
.
0
15000
1
.
0
1
=
⋅
=
⋅
=
Az
z
g
R
M
Nm
500
1
.
0
5000
1
.
0
2
=
⋅
=
⋅
=
Bz
z
g
R
M
Nm
0
=
B
z
g
M
5. Momenty gn
ą
ce wypadkowe
2
2
z
g
y
g
w
g
M
M
M
+
=
Nm
0
0
0
2
2
2
2
=
+
=
+
=
A
z
g
A
y
g
A
w
g
M
M
M
Nm
7
.
1507
1500
5
.
152
2
2
2
1
2
1
1
=
+
=
+
=
z
g
y
g
w
g
M
M
M
Nm
4
.
651
500
5
.
417
2
2
2
2
2
2
2
=
+
=
+
=
z
g
y
g
w
g
M
M
M
Nm
0
0
0
2
2
2
2
=
+
=
+
=
B
z
g
B
y
g
B
w
g
M
M
M
6. Momenty zredukowane
2
2
75
.
0
S
w
g
red
M
M
M
⋅
+
=
Nm
0
0
75
.
0
0
75
.
0
2
2
2
2
=
⋅
+
=
⋅
+
=
A
S
A
w
g
A
red
M
M
M
Nm
7
.
1507
0
75
.
0
7
.
1507
75
.
0
2
2
2
1
2
1
L
1
=
⋅
+
=
⋅
+
=
S
w
g
red
M
M
M
Nm
7
.
1738
1000
75
.
0
7
.
1507
75
.
0
2
2
2
1
2
1
P
1
=
⋅
+
=
⋅
+
=
S
w
g
red
M
M
M
Nm
7
.
1083
1000
75
.
0
4
.
651
75
.
0
2
2
2
2
2
2
L
2
=
⋅
+
=
⋅
+
=
S
w
g
red
M
M
M
Nm
4
.
651
0
75
.
0
4
.
651
75
.
0
2
2
2
2
2
2
P
2
=
⋅
+
=
⋅
+
=
S
w
g
red
M
M
M
Nm
0
0
75
.
0
0
75
.
0
2
2
2
2
=
⋅
+
=
⋅
+
=
B
S
B
w
g
B
red
M
M
M
7.
Ś
rednica wału d
g
z
red
red
k
W
M
≤
=
max
σ
;
32
3
d
W
z
⋅
=
π
;
Nm
7
.
1738
max
=
red
M
g
red
red
k
d
M
≤
⋅
=
32
3
max
π
σ
mm
85
.
52
120
1000
7
.
1738
32
32
3
3
max
=
⋅
⋅
⋅
=
⋅
⋅
=
π
π
g
red
k
M
d
mm
85
.
52
=
d