D
rg
a
n
ia
i
f
a
le
5
S
K
*
A
D
A
N
IE
D
R
G
A
+
H
A
R
M
O
N
IC
Z
N
Y
C
H
R
u
ch
y
h
ar
m
o
n
ic
zn
e
s$
c
z
!s
to
r
u
ch
am
i
z
"o
#o
n
y
m
i
z
k
il
k
u
l
u
b
n
aw
et
zn
ac
zn
ej
l
ic
zb
y
r
u
ch
ó
w
h
ar
m
o
n
ic
zn
y
ch
.
O
g
ra
n
ic
zy
m
y
s
i!
d
o
a
n
al
iz
y
z
"o
#e
)
d
w
ó
ch
d
rg
a
).
S
k
"a
d
an
ie
d
rg
a
)
ró
w
n
o
le
g
"y
ch
M
am
y
d
w
a
d
rg
an
ia
s
k
"a
d
o
w
e:
(
(
(
(
(
(
co
s(
)
co
s
x
A
t
A
ω
δ
ϕ
=
+
=
2
2
2
2
2
2
co
s(
)
co
s
x
A
t
A
ω
δ
ϕ
=
+
=
Z
a
"o
#y
m
y
,
#e
(
0
A
>
i
2
0
A
>
.
Je
&l
i
ta
k
n
ie
j
es
t
to
z
n
ak
(
−
)
m
o
#n
a
u
w
zg
l!
d
n
i%
w
faza
ch
(
δ
i
2
δ
,
n
p
.
cos
(
)
cos
(
)
A
t
A
t
ω
δ
ω
δ
π
−
+
=
+
+
.
D
rg
an
ie
w
y
p
ad
k
o
w
e
d
an
e
je
st
r
ó
w
n
an
ie
m
[
]
(
2
(
(
2
2
(
)
(
)
(
)
co
s
co
s
(
)c
o
s
(
)
x
t
x
t
x
t
A
A
A
t
t
ϕ
ϕ
ϕ
=
+
=
+
=
Z
"o
#e
n
ie
d
w
ó
ch
d
rg
a
)
ró
w
n
o
le
g
"y
ch
o
d
o
w
o
ln
y
ch
a
m
p
li
tu
d
ac
h
m
o
#n
a
an
al
iz
o
w
a
%
u
#y
w
aj
$c
m
et
o
d
y
w
ek
to
ro
w
ej
l
u
b
m
et
o
d
y
w
sk
a
zó
w
.
D
ia
g
ra
m
w
ek
to
ro
w
y
Z
t
w
ie
rd
ze
n
ia
k
o
si
n
u
só
w
2
2
(
2
(
2
2
2
(
2
(
2
2
(
2
co
s
2
co
s(
)
A
A
A
A
A
A
A
A
A
α
ϕ
ϕ
=
+
−
=
+
+
−
(
(
2
2
(
(
2
2
si
n
si
n
tg
co
s
co
s
A
A
A
A
ϕ
ϕ
ϕ
ϕ
ϕ
+
=
+
m
ax
(
2
A
A
A
=
+
,
m
in
(
2
A
A
A
=
−
Je
&l
i
(
ϕ
i
/l
u
b
2
ϕ
s
$
fu
n
k
cj
am
i
cz
as
u
t
o
z
ar
ó
w
n
o
a
m
p
li
tu
d
a
A
j
ak
i
f
az
a
ϕ
s$
f
u
n
k
cj
am
i
cz
as
u
.
W
y
st
!p
u
je
m
o
d
u
la
cj
a
a
m
p
li
tu
d
y
i
f
az
y
(
b
$d
'
cz
!s
to
&c
i)
.
D
rg
a
n
ia
i
f
a
le
6
D
o
d
aw
an
ie
d
rg
a
)
p
ro
st
o
p
ad
"y
ch
W
e
'm
y
p
o
d
u
w
ag
!
d
rg
an
ie
p
u
n
k
tu
m
at
er
ia
ln
eg
o
b
!d
$c
e
w
y
n
ik
ie
m
n
a
"o
#e
n
ia
s
i!
d
w
ó
ch
d
rg
a
)
h
ar
m
o
n
ic
zn
y
ch
o
d
p
o
w
ie
d
n
io
w
zd
"u
#
o
si
x
i
y
.
co
s(
)
co
s(
)
x
x
x
y
y
y
x
A
t
y
A
t
ω
ϕ
ω
ϕ
=
+
=
+
-
r
ó
w
n
an
ie
t
o
ru
w
p
o
st
ac
i
p
ar
am
et
ry
cz
n
ej
P
o
"o
#e
n
ie
p
u
n
k
tu
m
o
#e
b
y
%
o
p
is
an
e
w
ek
to
re
m
(
)
(
)
(
)
x
y
r
t
x
t
e
y
t
e
=
+
!
!
!
N
ie
k
tó
re
s
zc
ze
g
ó
ln
e
p
rz
y
p
ad
k
i,
g
d
y
x
y
ω
ω
ω
=
=
,
0
x
ϕ
=
,
y
ϕ
ϕ
=
∆
co
s(
)
x
x
A
t
ω
=
co
s(
)
y
y
A
t
ω
ϕ
=
+
∆
(a
)
2
,
0
,
(,
2
,.
..
n
n
ϕ
π
∆
=
=
±
±
y
x
A
y
x
A
→
=
(b
)
(2
()
,
0
,
(,
2
,.
..
n
n
ϕ
π
∆
=
+
=
±
±
y
x
A
y
x
A
→
=
−
D
rg
a
n
ia
i
f
a
le
7
D
o
d
aw
an
ie
d
rg
a
)
p
ro
st
o
p
ad
"y
ch
,
cd
.
2
a)
(2
()
,
0
,
(,
2
,.
..
2
x
y
n
n
A
A
A
π
ϕ
∆
=
+
=
±
±
=
=
2
2
2
x
y
A
+
=
ró
w
n
an
ie
o
k
r!
g
u
2
b
)
(2
()
,
0
,
(,
2
,.
..
2
x
y
n
n
A
A
π
ϕ
∆
=
+
=
±
±
≠
2
2
2
2
(
x
y
x
y
A
A
+
=
ró
w
n
an
ie
e
li
p
sy
P
rz
y
p
ad
ek
o
g
ó
ln
y
:
k
rz
y
w
e
L
is
sa
jo
u
s