background image

REVIEW OF BASIC STEPS 

IN DERIVATION OF FLOW 

EQUATIONS

SIG4042 Reservoir Simulation

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Home

Handou

ts

(pdf 

file)

Contents

Constitutive Equations

Conservation of Momentum

Flow Equation

Black Oil Model

Conservation of Mass

Boundary and Initial 

Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional Flow

Coordinate Systems

Boundary and Initial 

Conditions of Multiphase 

Systems

Questions

Introduction

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Introduction

Introduction

Flow equations for flow in porous materials are based on a set of mass, 

momentum and energy conservation equations, and constitutive 
equations for fluids and the porous material.

For simplicity, we will in the following assume isothermal conditions, so that 

we not have to involve an energy conservation equation. However, in 
cases of changing reservoir temperature, such as in the case of cold 
water injection into a warmer reservoir, this may be of importance. 

Equations are described for linear, one-dimensional systems, but can easily 

be extended to two and three dimensions, and to other coordinate 
systems.

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Conservation of Mass

Conservation of mass

Again we will consider the following one dimensional slab of porous 

material:

fluid

x

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Conservation of Mass

Mass conservation may be formulated across a control element of the 

slab, with one fluid of density 

, flowing through it at a velocity u:

x

u

The mass balance for the control element is then written as:

element

 

 the

inside

mass

 

of

 

change

 

of

 

Rate

Dx

+

at x

element 

 the

of

out 

 

Mass

at x

element 

 the

into

 

Mass

Continue

u

A

 

x

 u

A

 

x x

t

Ax

or

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Conservation of Mass

u

A

 

x

 u

A

 

x x

t

Ax

Dividing equation above by 

x, and taking the limit as x goes to zero, 

we get the conservation of mass, or continuity equation:

 



t

A

u

A

x

 

 



t

u

x

For constant cross sectional area, the continuity equation simplifies to:

Continue

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Conservation of Momentum

Conservation of momentum

Conservation of momentum is governed by the Navier-Stokes equation, but is 

normally simplified for low velocity flow in porous materials to be described by 
the semi-empirical Darcy's equation, which for one dimensional, horizontal flow is:

x

P

k

u

Continue

Alternative equations are the Forchheimer equation, for high velocity flow:

n

u

k

u

x

P

where n is proposed by Muscat to be 2.

The Brinkman equation, which applies to both porous and non-porous flow:

2

2

x

u

k

u

x

P

Brinkman's equation reverts to Darcy's equation for flow in porous media, since the 

last term then normally is negligible, and to Stoke's equation for channel flow 
because the Darcy part of the equation then may be neglected. 

In the following, we assume that 

Darcy's equation is valid for flow in 

porous media.

 

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Constitutive Equations

Constitutive equation for porous materials 

To include pressure dependency in the porosity, we use the definition of 

rock compressibility:

T

r

P

c





1

Keeping the temperature constant, the expression may be written:

r

c

dP

d

Normally, we may assume that the bulk volume of the porous material 

is constant, i.e. the bulk compressibility is zero. This is not always 
true, as witnessed by the subsidence in the Ekofisk area.

Continue

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Constitutive Equations

Constitutive equations for fluids 

Recall the familiar fluid compressibility definition, which applies to 

any fluid at constant temperature:

T

f

P

V

V

c

1

Equally familiar is the gas equation, which for an ideal gas is:

PVnRT

For a real gas includes the deviation factor, Z:

PVnZRT

The gas density may be expressed as:

g

gS

P
Z

Z

S

P

S

where the subscript S denotes surface (standard) conditions.

Continue

These equations are frequently used in reservoir engineering applications.

 

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Description of Black Oil model

For reservoir simulation purposes, we normally use either so-called Black Oil 

fluid description, or compositional fluid description. For now, we will 
consider the Black Oil model, and get back to compositional model later on.

Black Oil Model

conditions

 

standard

at 

 

volume

conditions

reservoir 

at 

 

volume

B

conditions

 

standard

at 

 

oil

 

of

 

volume

conditions

 

standard

at 

 

oil

 

from

 

evolved

 

gas

 

of

 

volume

so

R

Continue

The density of oil at reservoir conditions is then, in terms of these 

parameters and the densities of oil and gas, defined as:

o

oS

gs

R

so

B

o

Continue

The standard Black Oil model includes Formation Volume Factor, B, for each 

fluid, and Solution Gas-Oil Ratio, R

so

, for the gas dissolved in oil, in 

addition to viscosity and density for each fluid. A modified model may 
also include oil dispersed in gas, r

s

, and gas dissolved in water, R

sw

. The 

definitions of formation volume factors and solution gas-oil ratio are:

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Black Oil Model

Typical pressure dependencies of the standard Black Oil parameters are
(click on buttons):

P

B

w

P

B

g

B

w

 vs. P

B

g

 vs. P

P

B

o

B

o

 vs. P

P

w

w

 vs. P

P

g

g

 vs. P

P

o

o

 vs. P

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Black Oil Model

Typical pressure dependency of the Solution Gas-Oil Ratio in Black Oil model is
(click on button):

P

R

so

R

so

 vs. P

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Flow Equation

Flow equation

For single phase flow, in a one-dimensional, horizontal system, 

assuming Darcy's equation to be applicable and that the cross 
sectional area is constant, the flow equation becomes:





B

t

x

P

B

k

x

Continue

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Boundary and Initial Conditions

Dirichlet conditions

When pressure conditions are specified, we normally would specify 

the pressures at the end faces of the system in question. Applied 
to the simple linear system described above, we may have the 
following two pressure BC's at the ends:

R

L

P

t

L

x

P

P

t

x

P

0

,

0

,

0

For reservoir flow, a pressure condition will normally be specified as 

a bottom-hole pressure of a production or injection well, at some 
position of the reservoir. Strictly speaking, this is not a boundary 
condition, but the treatment of this type of condition is similar to 
the treatment of a boundary pressure condition.

More

Boundary conditions

We have two types of BC's: pressure conditions (Dirichlet conditions) and rate 

conditions (Neumann conditions). The most common boundary conditions 
in reservoirs, including sources/sinks, are discussed in the following. 

Continue

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Boundary and Initial Conditions

Neumann condition

Alternatively, we would specify the flow rates at the end faces of the 

system in question. Using Darcy's equation at the ends of the 
simple system above, the conditions become:

For reservoir flow, a rate condition may be specified as a production or 

injection rate of a well, at some position of the reservoir, or it is 
specified as a zero-rate across a sealed boundary or fault, or between 
non-communicating layers.

More

0

x

L

x

P

kA

Q

L

x

L

x

P

kA

Q

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Boundary and Initial Conditions

Initial condition (IC)

The initial condition specifies the initial state of the primary variables 

of the system. For the simple case above, a constant initial 
pressure may be specified as:

The initial pressure may be a function of postition. For non-horizontal 

systems, hydrostatic pressure equilibrium is normally computed 
based on a reference pressure and fluid densities:

Continue

  

  P(x0) P

0

P(z,0) P

ref

 ( z

ref

)

g

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Multiphase Flow

Multiphase flow

A continuity equation may be written for each fluid phase flowing:

The corresponding Darcy equations for each phase are:

Continue

l

l

l

l

S

t

u

x



x

P

kk

u

l

l

rl

l

g

w

o

l

,

,

g

w

o

l

,

,

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Multiphase Flow

The continuity equation for gas has to be modified to include solution 

gas as well as free gas, so that the oil equation only includes the 
part of the oil remaining liquid at the surface:

Where 

oL

 represents the part of the oil remaining liquid at the surface 

(in the stock tank), and 

oG

 the part that is gas at the surface.

Continue

o

oS

gS

R

so

B

o

oL

oG

o

oG

g

g

o

oG

g

g

S

S

t

u

u

x





o

oL

o

oL

S

t

u

x



Thus, the oil and gas continuity equations become:

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Multiphase Flow

After substitution for Darcy's equations and Black Oil fluid properties, 

and including well rate terms, the flow equations become:

The oil equation could be further modified to include dispersed oil in the gas, 

if any, similarly to the inclusion of solution gas in the oil equation.

Continue





o

o

so

g

g

o

so

g

o

o

ro

so

g

g

g

rg

B

S

R

B

S

t

q

R

q

x

P

oB

kk

R

x

P

B

kk

x

Where:

w

o

cow

P

P

P

o

g

cog

P

P

P

S

l

lo,w,g

1









w

w

w

w

w

w

rw

B

S

t

q

x

P

B

kk

x









o

o

o

o

o

o

ro

B

S

t

q

x

P

B

kk

x

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Non-horizontal Flow

Non-horizontal flow

For one-dimensional, inclined flow:

the Darcy equation becomes:

Continue

x

D

u

dx

dD

g

x

P

k

u

or, in terms of dip angle, 

, and hydrostatic gradient:

 

sin

x

P

k

u

where 

=g is the hydrostatic gradient of the fluid.

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Multidimensional Flow

Multidimensional flow

The continuity equation for one-phase, three-

dimensional flow in cartesian coordinates, is:

The corresponding Darcy equations are:

More

 

 

 



t

u

z

u

y

u

x

z

y

x

x

D

x

P

k

u

x

x





y

D

y

P

k

u

y

y

z

D

z

P

k

u

z

z

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Coordinate Systems

Coordinate systems

Normally, we use either a rectangular coordinate system or a cylindrical 

coordinate system in reservoir simulation (click the buttons):

x

Rectangular

coordinates

y

z

r

Cylindrical

coordinates

z

r

Spherical

coordinates

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Boundary and Initial Conditions of Multiphase 

Systems

Boundary conditions of multiphase systems

The pressure and rate BC's discussed above apply to multiphase systems. 

However, for a production well in a reservoir, we normally specify 
either an oil production rate at the surface, or a total liquid rate at the 
surface. Thus, the rate(s) not specified must be computed from 
Darcy's equation. The production is subjected to maximum allowed 
GOR or WC, or both. We will discuss these conditions later.

See a picture

O I L

O I L

G A S

W A T E R

Z

G O C

W O C

A Q U I F E R

BC:

1) P

bh

 = constant

2) Q = constant

BC:

1) P

bh

 = constant

2) Q

inj

 = constant

BC:

k = 0

0

x

P

kA

q

BC:

q = 0

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Boundary and Initial Conditions of Multiphase 

Systems

Initial conditions of multiphase systems

In addition to specification of initial pressures, we also need to specify 

initial saturations in a multiphase system. This requires knowledge of 
water-oil contact (WOC) and gas-oil contact (GOC). Assuming that the 
reservoir is in equilibrium, we may compute initial phase pressures 
based on contact levels and densities. Then, equilibrium saturations 
may be interpolated from the capillary pressure curves. Alternatively, 
the initial saturations are based on measured logging data.

O I L

O IL

G A S

W A T E R

Z

G O C

W O C

See a picture

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Questions

1) Write the mass balance equation (one-dimentional, one-phase).

Next

2) Write the most common relationship between velocity and 

pressure, and write an alternative relationship used for high 
fluid velocities.

3) Write the expression for the relationship between porosity and 

pressure.

4) List 3 commonly used expressions for relating fluid density to 

pressure.

5) Describe briefly Black Oil model.

6) Sketch typical dependencies of the standard Black Oil 

parameters.

7) Write Darcy equation for one-dimentional, inclined flow.

8) Write continuity equation for one-phase, three-dimensional 

flow in cartesian coordinates.

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

A

-  area, m

2

B

-  formation volume factor 

c

-  compressibility, 1/Pa 

k

-  permeability, m

2

k

r

-  relative permeability, m

2

L

-  lenght, m

N

-  number of grid blocks

n

-  number of moles

O(...) -  discretization error 

P

-  pressure, Pa

P

c

-  capillary pressure, Pa

Q, q -  flow rate, Sm

3

/d

R

-  gas constant

R

so

-  solution gas-oil ratio

r

-  radius, m

S

-  saturation

T

-  temperature, K

t

-  time, s

u

-  Darcy velocity, m/s

V

-  volume, m

3

x

-  distance, m

x, y, z

 -  spatial coordinate

Z

-  deviation factor

-  angle

x

-  lenght of grid block, m

t

-  time step, s

-  porosity

-  viscosity, Pa·s

-  density, kg/m

3

Subscripts:

0

-  initiall value 

e

-  end of reservoir

f

-  fluid

g

-  gas

i

-  block number

L

-  left side

l

-  liquid

o

-  oil

R

-  right side

S

-  surface (standard) conditions

r

-  rock

w

-  water

w

-  well

Nomenclature

Back to presentation

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

General information

About the author

Title:

Review of Basic Steps in Derivation of Flow Equations

Teacher(s):

Jon Kleppe

Assistant(s):

Szczepan Polak

Abstract:

Review of basic steps in derivation of flow equations for 
flow in porous materials based on set of mass, momentum 
and energy conservation equations, and constitutive 
equations for fluid and porous material in isothermical 
conditions.

Keywords:

conservation equations, constitutive equations, black oil 
model, multiphase flow, non-horizontal flow, 
multidimensional flow, coordinate systems

Topic discipline:

Reservoir Engineering -> Reservoir Simulation

Level:

4

Prerequisites:

Good knowledge of reservoir engineering

Learning goals:

Learn basic principles of Reservoir Simulation

Size in megabytes:

0.9

Software requirements:

-

Estimated time to complete:

60 minutes

Copyright information:

The author has copyright to the module

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

FAQ

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

References

Aziz, K. and Settari, A.: Petroleum Reservoir Simulation, Applied 

Science Publishers LTD, London (1979)

Mattax, C.C. and Kyte, R.L.: Reservoir Simulation, Monograph Series, 

SPE, 
Richardson, TX (1990)

Skjæveland, S.M. and Kleppe J.: Recent Advances in Improved Oil 

Recovery Methods for North Sea Sandstone Reservoirs, SPOR 
Monograph, Norvegian Petroleum Directoriate, Stavanger 1992

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

Summary

background image

FAQ

Referenc

es

Summar

y

Info

Conservation of 

Momentum

Black Oil Model

Conservation 

of Mass

Constitutive 

Equations

Questions

Flow Equation

Boundary and 

Initial 
Conditions

Multiphase Flow

Non-horizontal Flow

Mutlidimensional 

Flow

Coordinate Systems

Boundary and 

Initial 
Conditions of 
Multiphase 
Systems

Nomenclature

Introduction

About the Author

Name

 Jon Kleppe

Position

 Professor at Department of 

Petroleum Engineering and 
Applied Geophysics at NTNU

Address:

 

NTNU

S.P. Andersensvei 15A

7491 Trondheim

E-mail:

kleppe@ipt.ntnu.no

Phone:

 

+47 73 59 49 33

Web:

http://iptibm3.ipt.ntnu.no/~kleppe

/


Document Outline