CALC1 L 11 12 Differenial Equations

background image

DIFFERENTIAL EQUATIONS

background image

background image

background image

In most cases, the family of functions will depend in
some way on a constant C, and the graphs of these
functions will form a family of curves that fill up the (t,
y
) plane, but do not touch each other, as in the
following figure.

Example:

The general solution of

is

background image

Graph of solution

background image

background image

background image

has more than one solution

. One is simply y(x) = 0, the second one is obtained by

separating the variables. This leads to

The two solutions y = 0 and y = (x/5)

5

both satisfy the initial condition y(0) = 0

background image

4

1

5

/

4

5

4

)'

(

y

y

y

f

The derivative of the previous example is not continuous

background image

SEPARABLE EQUATIONS

background image

1.

background image

)

(

)

(

'

,

)

(

)

(

y

h

y

K

where

C

t

G

y

K

We find the antiderivatives of both sides

If it is possible, solve for y as a function of x y(x).

The general solution is the family of all solutions found above.
It will usually depend on C.

If an initial value y

0

(x) = y

0

is given, use it to find the constant C and

the particular solution of the problem.

1.cd

2.

3.

background image

Example 1

background image

Example 2

background image

background image

background image

FIRST ORDER LINEAR

DIFFERENTIAL EQAUTIONS

background image

(*)

(*)

(*)

background image

The above equation has separable variables, because it
can be written

0

)

(

)

(

'

y

x

p

dx

dy

y

x

p

y

y

x

p

dx

dy

)

(

background image

background image

background image

VARIATION OF CONSTANTS

background image

background image

c

t

t

C

t

t

C

t

t

t

C

RHS

LHS

t

RHS

t

t

C

t

t

C

t

t

t

C

t

t

C

y

t

y

LHS

6

)

(

)

(

'

)

(

'

)

(

'

)

(

3

)

3

)(

(

)

(

'

3

'

6

5

2

3

2

3

3

1

4

3

1

The particular solution is x(t) = C t

-3

,

Step 2

Take

3

)

(

)

(

t

t

C

t

y

3

3

3

6

1

6

1

)

6

(

)

(

t

c

t

t

c

t

t

y

General solution is

background image

background image

background image

background image

background image


Document Outline


Wyszukiwarka

Podobne podstrony:
zaaw wyk ad5a 11 12
budzet ue 11 12
11 12 w2010 11 proteomika
foniatra 11 12
2003 11 12
G B Folland Lectures on Partial Differential Equations
Kształcenie literackie& 11 12 r
TRB W10 11 12 02 montaż?
Wyklad 3 11 12
Źródła informacji 11 12
10,11,12
sylabus neurobiologia 11 12 v 1
W 6 13 11 12
06 11 12 rachunek kosztów
wykłady do 11 12 13
EM U A wyk 11 12
dodatkowe1 analiza 11 12 2 sem Nieznany
chemia analityczna wyklad 11 i 12

więcej podobnych podstron