Kopia OBLICZENIA PŁYTA SŁUP STOPA


Overview

PŁYTA
SŁUP
Stopa


Sheet 1: PŁYTA





































PROJEKT USTROJU PLYTOWO SŁUPOWEGO






























DANE


















L [m] B [m] m H1 p [kPa] beton stal ID










5,2 5,4 4 4,1 6 B-25 A-II 0,7





























Beton B 25
Stal A-II











fck = 20 [Mpa] Tab.nr2 fyk = 355 [Mpa] Tab.nr3










fcd = 13,3 [Mpa] Tab.nr2 fyd = 310 [Mpa] Tab.nr3










fctm = 2,2 [Mpa] Tab.nr2 fdk = 480 [Mpa] Tab.nr3










Ecm = 30 [Gpa]
xefflim 0,55 [-] Tab.nr 9


































































ZEBRANIE OBCIĄŻEŃ DLA RAM ZASTĘPCZYCH































OBCIAŻENIA STAŁE














kierunek X/Y kierunek Y kierunek X







Q [kN/m3] a [m] B[m] qk [kN/m] g q [kN/m] B[m] qk [kN/m] g q [kN/m]






posadzka cementowa 21 0,04 5,2 4,368 1,3 5,678 5,4 4,536 1,3 5,897






2xpapa termozg.

5,2 0,624 1,2 0,749 5,4 0,648 1,2 0,778






tynk cem-wap 19 0,015 5,2 1,482 1,3 1,927 5,4 1,539 1,3 2,001











Σ 8,354

Σ 8,675

























OBCIĄŻENIE ZMIENNE













kierunek X/Y kierunek X kierunek Y





p [kN/m2] B[m] pk [kN/m] g p [kN/m] B[m] pk [kN/m] g p [kN/m]





obciążenie użytkowe 6 5,2 31,2 1,2 37,44 5,4 32,4 1,2 38,88











































OBCIĄŻENIA Z DACHU
































Q [kN/m3] Q [kN/m2] a [m] B[m] qk [kN/m] g q [kN/m]









blacha trapezowa 25
0,005 5,2 0,65 1,1 0,715









styropian 0,45
0,1 5,2 0,234 1,2 0,281









papa termozgrz.
0,06
5,2 0,312 1,2 0,374









gładź cementowa 21
0,03 5,2 3,276 1,3 4,259









płyty panwiowe
2,58
5,2 13,416 1,1 14,758









tynk cem-wapienny 19
0,015 5,2 1,482 1,3 1,927
















Σ 22,313










OBCIĄŻENIE WIATREM
















































Q [kN/m2] C Ce b pk [kN/m] B[m] pk [kN/m] g p [kN/m]









0,35 0,1 1 1,8 0,063 5,2 0,328 1,3 0,43



























OBCIĄŻENIE ŚNIEGIEM



































































Qk [kN/m2] C Sk [kN/m2] B[m] Sk [kN/m] g S [kN/m]











0,7 0,8 0,56 5,2 2,912 1,4 4,08


































































OBCIĄŻENIA OD ŚCIAN II KONDYGNACJI I GZYMSU DLA KIER. Y



















Q [kN/m3] a [m] h [m] B[m] Pk [kN] g P [kN]









ściana z gazobetonu 12,5 0,24 2,85 5,2 44,460 1,1 48,906









gzyms 25 0,369 5,2 47,970 1,1 52,767
















Σ 101,673




























OBCIĄŻENIA OD ŚCIAN II KONDYGNACJI DLA KIER. X













Q [kN/m3] a [m] h [m] B[m] Pk [kN] g P [kN]









ściana z gazobetonu 12,5 0,24 4,2 5,4 68,04 1,1 74,844









attyka 25 0,24 0,8 5,4 25,92 1,1 28,512
















Σ 103,356















































WYZNACZENIE ZBROJENIA DLA PŁYTY ZE WZGLĘDU NA ZGINANIE















































Obliczenie otuliny zbrojenia














Wg. Tab.nr 21 dla XC1 wg tab. Nr 8













cmin = 15 [mm]














Dc = 5 [mm]














cnom = cmin + Dc = 20 [mm]
































Do obliczeń wstępnych przyjmuje pręty F = 8 [mm] Siatka dolna












F = 12 [mm] Siatka górna








Wyznaczenie wysokości użytecznej d Φst = 8 [mm] Strzemiona























































SIATKA Kierunek hpl cnom Φst Φ/2 d











Dolna Y 24 2 0,8 0,4 20,8 [cm]










X
20 [cm]










Górna Y 24 2 0,8 0,6 19,4 [cm]










X



20,6 [cm]































SIATKA DOLNA













W KIERUNKU Y


































Wartości max momentów przęsłowych dla poszczególnych części ryglaramy zastępczej




























Rygiel M [kNm]
















1 151,068
















2 116,199




































Rozdział momentów na pasmo

































Rygiel 1



































RYGIEL M [kNm] 50% M [kNm] 25% M [kNm]











1 151,068 75,534 37,767











2 116,199 58,100 29,050












szerokość pasma 2,08 3,12 [m]














































































































































Dla wycinka środkowego pasma























































Obliczanie wartości współczynnika ueff































































































Numer Odcinek Msd b d fcd ueff











RYGLA RYGLA [kNm] [m] [m] [kN/m2] [ - ]











1 A 37,767 1,56 0,208 13300 0,0421











B 75,534 2,08 0,208 13300 0,0631











2 A 29,050 1,56 0,208 13300 0,0324











B 58,100 2,08 0,208 13300 0,0485






























Obliczenie wartości współczynników pomocniczych do obl. Metodą uproszczoną ξeff ζeff


























































































Numer Odcinek ξeff ζeff














RYGLA RYGLA














1 A 0,043 0,979














B 0,065 0,967














2 A 0,033 0,984














B 0,050 0,975

































Sprawdzenie czy przekrój wymaga zbrojenia w strefie ściskanej
















































































Numer Odcinek ξeff
ξefflim













RYGLA RYGLA













1 A 0,043 < 0,55 przekrój pojedyńczo zbrojony









B 0,065 < 0,55 przekrój pojedyńczo zbrojony









2 A 0,033 < 0,55 przekrój pojedyńczo zbrojony









B 0,050 < 0,55 przekrój pojedyńczo zbrojony




























Obliczenie pola przekroju zbrojenia As1




























































































Sprawdzenie warunku minimalnego pola przekroju zbrojenia






















































































































































































TABELA ZBROJENIA



































Numer Odcinek As1 F szt. As1prow
As1min










RYGLA RYGLA [cm2] [mm]
[cm2]
[cm2]










1 A 5,99 8 12 6,03 > 5,23 warunek min zbrojenia spełniony






B 12,11 8 25 12,57 > 6,97 warunek min zbrojenia spełniony






2 A 4,58 8 10 5,03 < 5,23 warunek min zbrojenia nie spełniony






B 9,24 8 19 9,55 > 6,97 warunek min zbrojenia spełniony
























Na etapie projektowania rozkładu zbrojenia należy zwiększyć ilość prętów dla odcinków nie spełniających wymogu min. Stopnia zbrojenia

























W KIERUNKU X


































Wartości max momentów przęsłowych dla poszczególnych części ryglaramy zastępczej




























Rygiel M [kNm]
















1 143,954
















2 111,843




































Rozdział momentów na pasmo

































Rygiel 1



































RYGIEL M [kNm] 50% M [kNm] 25% M [kNm]











1 143,954 71,977 35,989











2 111,843 55,922 27,961












szerokość pasma 2,16 3,24 [m]
















































































































































































Dla wycinka środkowego pasma























































Obliczanie wartości współczynnika ueff































































































Numer Odcinek Msd b d fcd ueff











RYGLA RYGLA [kNm] [m] [m] [kN/m2] [ - ]











1 A 35,9885 1,62 0,2 13300 0,0418











B 71,977 2,16 0,2 13300 0,0626











2 A 27,961 1,62 0,2 13300 0,0324











B 55,922 2,16 0,2 13300 0,0487






























Obliczenie wartości współczynników pomocniczych do obl. Metodą uproszczoną ξeff ζeff


























































































Numer Odcinek ξeff ζeff














RYGLA RYGLA














1 A 0,043 0,979














B 0,065 0,968














2 A 0,033 0,984














B 0,050 0,975

































Sprawdzenie czy przekrój wymaga zbrojenia w strefie ściskanej
















































































Numer Odcinek ξeff
ξefflim













RYGLA RYGLA













1 A 0,043 < 0,55 przekrój pojedyńczo zbrojony









B 0,065 < 0,55 przekrój pojedyńczo zbrojony









2 A 0,033 < 0,55 przekrój pojedyńczo zbrojony









B 0,050 < 0,55 przekrój pojedyńczo zbrojony




























Obliczenie pola przekroju zbrojenia As1




























































































Sprawdzenie warunku minimalnego pola przekroju zbrojenia






















































































































































































TABELA ZBROJENIA



































Numer Odcinek As1 F szt. As1prow
As1min










RYGLA RYGLA [cm2] [mm]
[cm2]
[cm2]










1 A 5,93 8 12 6,03 > 5,22 warunek min zbrojenia spełniony






B 12,00 8 24 12,06 > 6,96 warunek min zbrojenia spełniony






2 A 4,59 8 10 5,03 < 5,22 warunek min zbrojenia nie spełniony






B 9,25 8 19 9,55 > 6,96 warunek min zbrojenia spełniony
























Na etapie projektowania rozkładu zbrojenia należy zwiększyć ilość prętów dla odcinków nie spełniających wymogu min. Stopnia zbrojenia






SIATKA GÓRNA













W KIERUNKU Y


































Wartości max momentów przęsłowych dla poszczególnych części ryglaramy zastępczej




























Podpora M [kNm]
















1 219,596
















2 184,876




































Rozdział momentów na pasmo

































Rygiel 1



































PODPORA M [kNm] 42% M [kNm] 14% M [kNm] 15% M [kNm]









1 219,596 92,230 30,743 32,939









2 184,876 77,648 25,883 27,731










szerokość pasma 1,04 1,04 3,12 [m]


















































































































Dla wycinka środkowego pasma























































Obliczanie wartości współczynnika ueff































































































Numer Odcinek Msd b d fcd ueff











PODPORY PASMA [kNm] [m] [m] [kN/m2] [ - ]











1 A 32,939 1,56 0,206 13300 0,037











B 30,743 0,52 0,206 13300 0,105











C 92,230 1,04 0,206 13300 0,157











2 A 27,731 1,56 0,206 13300 0,031











B 25,883 0,52 0,206 13300 0,088











C 77,648 1,04 0,206 13300 0,132






























Obliczenie wartości współczynników pomocniczych do obl. Metodą uproszczoną ξeff ζeff


























































































Numer Odcinek ξeff ζeff














PODPORY PASMA














1 A 0,038 0,981














B 0,111 0,945














C 0,172 0,914














2 A 0,032 0,984














B 0,092 0,954














C 0,142 0,929




















































Obliczenie pola przekroju zbrojenia As2























































































Sprawdzenie warunku minimalnego pola przekroju zbrojenia






















































































































































































TABELA ZBROJENIA



































Numer Odcinek As2 F szt. As2prow
As2min










PODPORY PASMA [cm2] [mm]
[cm2]
[cm2]










1 A 5,26 12 5 5,65 > 5,18 warunek min zbrojenia spełniony







B 5,10 12 5 5,65 > 1,73 warunek min zbrojenia spełniony







C 15,80 12 14 15,83 > 3,45 warunek min zbrojenia spełniony







2 A 4,41 12 4 4,52 < 5,18 warunek min zbrojenia nie spełniony







B 4,25 12 4 4,52 > 1,73 warunek min zbrojenia spełniony







C 13,09 12 12 13,57 > 3,45 warunek min zbrojenia spełniony


























W KIERUNKU X


































Wartości max momentów przęsłowych dla poszczególnych części ryglaramy zastępczej




























PODPORA M [kNm]
















1 208,133
















2 178,646




































Rozdział momentów na pasmo

































Rygiel 1



































PODPORA M [kNm] 42% M [kNm] 14% M [kNm] 15% M [kNm]









1 208,133 87,416 29,139 31,220









2 178,646 75,031 25,010 26,797










szerokość pasma 1,08 1,08 3,24 [m]





















































































Dla wycinka środkowego pasma























































Obliczanie wartości współczynnika ueff































































































Numer Odcinek Msd b d fcd ueff











PODPORY RYGLA [kNm] [m] [m] [kN/m2] [ - ]











1 A 31,220 1,62 0,194 13300 0,039











B 29,139 0,54 0,194 13300 0,108











C 87,416 1,08 0,194 13300 0,162











2 A 26,797 1,62 0,194 13300 0,033











B 25,010 0,54 0,194 13300 0,093











C 75,031 1,08 0,194 13300 0,139






























Obliczenie wartości współczynników pomocniczych do obl. Metodą uproszczoną ξeff ζeff


























































































Numer Odcinek ξeff ζeff














PODPORY PASMA














1 A 0,039 0,980














B 0,114 0,943














C 0,177 0,911














2 A 0,034 0,983














B 0,097 0,951














C 0,150 0,925




















































Obliczenie pola przekroju zbrojenia As2























































































Sprawdzenie warunku minimalnego pola przekroju zbrojenia






















































































































































































TABELA ZBROJENIA



































Numer Odcinek As2 F szt. As2prow
As2min










PODPORY PASMA [cm2] [mm]
[cm2]
[cm2]










1 A 5,30 12 5 5,65 > 5,06 warunek min zbrojenia spełniony







B 5,14 12 5 5,65 > 1,69 warunek min zbrojenia spełniony







C 15,95 12 15 16,96 > 3,38 warunek min zbrojenia spełniony







2 A 4,53 12 5 5,65 > 5,06 warunek min zbrojenia spełniony







B 4,37 12 4 4,52 > 1,69 warunek min zbrojenia spełniony







C 13,49 12 12 13,57 > 3,38 warunek min zbrojenia spełniony












































ZESTAWIENIE PRĘTÓW DO ZBROJENIA PŁYTY
















RYGIEL kier. X kier Y ŚREDNICA ILOŚĆ PRĘTÓW B [m] ROZSTAW PRĘTÓW [cm]
/PODPORA Dołem Górą Dołem Górą Dołem Górą Dołem Górą

kier. X kier Y kier. X kier Y kier. X kier Y kier. X kier Y kier. X kier Y kier. X kier Y kier. X kier Y kier. X kier Y
1 A
8,0 8,0
12 12
1,62 1,56
13 13

B 8,0 8,0 24 25 2,16 2,08 9 8


A
12 12
5 5
1,62 1,56

32 31
B 12 12 5 5 0,54 0,52

10 10
C 12 12 15 14 1,08 1,04

7 7



















2 A
8,0 8,0
10 10
1,62 1,56
16 15

B 8,0 8,0 19 19 2,16 2,08 11 10


A
12 12
5 4
1,62 1,56

32 39
B 12 12 4 4 0,54 0,52

13 13
C 12 12 12 12 1,08 1,04

9 8




















DŁUGOŚĆ ZAKOTWIENIA




































podstawowa długość zakotwienia




































































































Siatka F fyd fbd lb













[mm] [Mpa] [Mpa] [ cm ]













dolna 8,0 310 2,3 27,0













górna 12 310 2,3 40,4
































obliczeniowa długość zakotwienia prętów




















































































Siatka αa lb Areq/ Aprov lbd
lbmin











[ cm ] [ - ] [ cm ]
[ cm ]











dolna 1 27,0 0,995 27,0 > 10











górna 1 40,4 0,998 41,0 > 12,13





























Na podstawie wyznaczonych rozstawów prętów zbrojenia zestawionych w tabeli należy zaprojektować zbrojenie górne i dolne,tak aby spełnione zostały wszystkie warunki konstrukcyjne






















WYMIAROWANIE ZE WZGLĘDU NA PRZEBICIE





























OKREŚLENIE SIŁ TNĄCYCH DZIAŁAJĄCYCH W OBRĘBIE SŁUPA




































SIŁA














TL TP














SŁUP ŚRODKOWY














Kierunek X 210,286 222,705














V1 432,991 [kN]













KierunekY 209,809 221,179














V2 430,988 [kN]















SŁUP KRAWĘDZIOWY Y SŁUP KRAWĘDZIOWY X











Kierunek X 210,286 222,705 156,851 165,321












V1 432,991 322,172 [kN]











KierunekY 151,447 159,999 209,809 221,179












V2 311,446 430,988 [kN]













SŁUP NAROŻNY














Kierunek X 136,047















V1 136,047 [kN]













KierunekY 132,266 -














V2 132,266 [kN]































































































































































CAŁKOWITA SIŁA POPRZECZNA NA PODPORZE































VEd 431,990 [kN] SŁUP ŚRODKOWY













VEd 376,580 [kN] SŁUP KRAWĘDZIOWY













VEd 268,313 [kN] SŁUP NAROŻNY
































Uśredniona wysokość użyteczna przekroju d'





















































































d' = 20 [cm]
































Określenie obwodu kontrolnego



































































































































cx cy d' u1














[m] [m] [m] [m]














0,3 0,3 0,2 3,713

































ZASTĘPCZE NAPRĘŻENIE ŚCINAJĄCE NA OBWODZIE KONTROLNYM






































































































SŁUP VEd u1 d' β vEd











[kN] [m] [m]
[kN/m2]











Środkowy 431,990 3,713 0,2 1,15 668,935











Skrajny 376,580 2,157 0,2 1,4 1222,301











Narożny 268,313 1,228 0,2 1,5 1638,295































określenie stopnia zbrojenia dla pasma słupowego
















































































ρLx ρLy ρL















[%] [%] [%]















0,65 0,63 0,64 Śrokowy
















0,32 Skrajny
















0,19 Narożny





















































ρL = 0,0064 < 0,02
































Wyznaczenie nośności na przebice dla płyty bez zbrojenia poprzecznego





































































































































































































































CRdc k ρL fck vRdc
vmin











[ - ] [ - ] [ - ] [Mpa] [kN/m2]
[kN/m2]











0,12 2 0,0064 20 562,68 > 442,7 Warunek spełniony








0,12 2 0,0032 20 446,60 > 442,7 Warunek spełniony








0,12 2 0,0019 20 376,68 < 442,7 Warunek nie został spełniony

































































SPRAWDZENIE CZY WYMAGANE JEST ZBROJENIE POPRZECZNE









































































































vRdc
vEd















[kN/m2]
[kN/m2]















563 < 668,935 WYMAGANE JEST ZBROJENIE POPRZECZNE








447 < 1222,301 WYMAGANE JEST ZBROJENIE POPRZECZNE








443 < 1638,295 WYMAGANE JEST ZBROJENIE POPRZECZNE



















































































Wyznaczenie max nośności na przebicie











































































































































fck n fcd
vRdmax













[Mpa] [ - ] [kN/m2]
[kN/m2]













20 0,552 13300 => 3670,8




























































































































































































































β VEd u0 d' V'Ed














[kN] [ m ] [ m ] [kN]













1,15 431,990 1,2 0,2 2069,950 Śrokowy












1,4 376,580 0,9 0,2 2928,956 Skrajny












1,5 268,313 0,6 0,2 3353,913 Narożny




































































SPRAWDZENIE WARUNKU PRZEBICIA












































































V'Ed
vRdmax















[kN] [kN/m2]















2069,950 < 3670,8 Warunek jest spełniony























2928,956 < 3670,8 Warunek jest spełniony























3353,913 < 3670,8 Warunek jest spełniony









































OKREŚLENIE NOŚNOŚCI PŁYTY NA PRZEBICIE ZE ZBROJENIEM POPRZECZNYM





























































































































fywdeff
fywd















300 < 310 warunek spełniony






























Określenie pola przekroju zbrojenia
























































































































































vEd vRdc d' sr fywdeff ui α sin α Asw1









[kN/m2] [kN/m2] [ m ] [ m ] [kN/m2] [ m ] [cm2]









668,935 562,68 0,2 0,15 300000 3,713 90 1 3,06









1222,301 446,60 0,2 0,15 300000 2,157 90 1 6,38









1638,295 376,68 0,2 0,15 300000 1,228 90 1 5,55



























PRZYJĘCIE ZBROJENIA



































Asw1 F szt. Asw1praw Ze wzgledów konstrukcyjnych Asw1rzecz









[cm2] [mm]
[cm2] przyjęto następujące ilośi strzemion [cm2]








Śrokowy 3,06 8 7 3,52 8 4,02








Skrajny 6,38 8 13 6,53 14 7,04








Narożny 5,55 8 12 6,03 12 6,03













































SPRAWDZENIE PRZEBICIA POZA STREFĄ ZBROJENIA (bez wpływu niezrównoważonego momentu)




























obwód kontrolny, w którym nie jest konieczne zbrojenie





















































































































β VEd d' vRdc uoutef














[kN] [ m ] [kN/m2] [ m ]













1,15 431,990 0,2 563 4,41 Śrokowy











1,4 376,580 0,2 447 5,90 Skrajny











1,5 268,313 0,2 443 4,55 Narożny






























odległość obwodu od lica słupa


























































uoutef cx cy a














[ m ] [m] [m] [m]














4,41 0,3 0,3 0,51 Śrokowy












5,90 0,3 0,3 0,75 Skrajny












4,55 0,3 0,3 0,53 Narożny































ostatni obwód zbrojenia wymagany w odległości od lica słupa






























































a d' b















[m] [m] [m]















0,51 0,2 0,21 Śrokowy













0,75 0,2 0,45 Skrajny













0,53 0,2 0,23 Narożny
































przyjmuje zbrojenie w dwóch obwodach
































0bw. I Obw II odległość
2*d'













0.5*d' 0.75*d' między















[ cm ] [ cm ] skrajnymi
cm











Śrokowy 10 15 35,36 < 40 warunek konstrukcyjny jest spełniony







Skrajny 10 15 35,36 < 40 warunek konstrukcyjny jest spełniony







Narożny 10 15 35,36 < 40 warunek konstrukcyjny jest spełniony




























































































































































SPRAWDZENIE UGIĘCIA PŁYTY












































































































































































































































































































































































































































































































































































d1 d2 aet As1 As2 a1 a2 r1 r2 xI xII







[cm] [cm]
[cm2] [cm2] [cm] [cm]

[cm] [cm]





Kierunek X 20,8 19,4 20,50 9,05 0 3,2 4,6 0,0020 0 12,30 5,18





KierunekY 20 20,6 20,50 6,28 2,26 4 3,4 0,0030 0,0005 12,24 5,83













































b h As1 As2 aet r1 r2 a2 xI xII II III






[cm] [cm] [cm2] [cm2]


[cm] [cm] [cm] [cm4] [cm4]




Kierunek X 216 24 9,05 0,00 20,50 0,0020 0,0000 4,6 12,30 5,18 262699,378181773 55261,5478235131




KierunekY 104 24 6,28 2,26 20,50 0,0030 0,0005 3,4 12,24 5,83 131331,686583535 32864,9625820191












































Ecm f Ec,eff















[Gpa]
[Gpa]















30 2 10


































Ec,eff II III b1 b2 MSd Mcr B









[Gpa] [m4] [m4]

[kNm] [kNm] kNm2







Kierunek X 10 0,00263 0,00055 1 0,5 55,922 45,619 7495,59







KierunekY 10 0,00131 0,00033 1 0,5 29,050 21,965 4182,99





















































































ML MP Mpz Na obrane pasmo L Obc.zastępcze







42%ML 84%ML 42%MP 84%MP 25%Mpz 50%Mpz
p







[kNm] [kNm] [kNm] [kNm] [kNm] [kNm] [kNm] [m] [m] [m] [kN/m]





Kierunek X 208,133 178,646 111,843
174,83172
150,06264
55,9215 5,2 64,61




KierunekY 219,596 184,876 116,199 92,23032
77,64792
29,04975
5,4 31,27












































p L Ix Ecm B ML MP f1 f2









[kN/m] [m] [m4] [Gpa] [kNm2] [kNm] [kNm] [m] [m]







Kierunek X 64,61 5,2 0,00124 30 7495,59 174,83172 150,06264 0,0088








KierunekY 31,27 5,4 0,00120 30 4182,99 92,23032 77,64792
0,0088




























f1 f2 f















[cm] [cm] [cm]















0,9 0,9 1,8














Sheet 2: SŁUP


OBLICZENIA SŁUPA































DANE:




































Beton B 25

Stal A-II












fck = 20 [Mpa] Tab.nr2 fyk = 355 [Mpa] Tab.nr3










fcd = 13,3 [Mpa] Tab.nr2 fyd = 310 [Mpa] Tab.nr3










fctm = 2,2 [Mpa] Tab.nr2 fdk = 480 [Mpa] Tab.nr3










fctd = 1 [Mpa]
xefflim 0,55 [-] Tab.nr 9










Ecm 30 [Gpa]


































WYZNACZENIE DŁUGOŚCI OBLICZENIOWEJ ELEMENTU































































































gdzie:
























































































































SŁUP lcol leff Ecm Icp ICs kA b l0










[m] [m] [Mpa] [m4] [m4] [ - ] [ - ] [m]









kierunek X 4,02 4,9 30000 0,00622 0,000675 7,561 1,026 4,12









kierunek Y 4,02 5,1 30000 0,00599 0,000675 6,995 1,028 4,13





























l0 = 4,13 [m]














[m]




















































UWZGLĘDNIENIE WPŁYWU SMUKŁOŚCI




















































































































SŁUP hs l0 l - -













[m] [m] [ - ]














1 0,3 4,13 13,8 > 7 należy uwzględnić wpływ smukłości





































































































EKSTREMALNE SIŁY WEWNĘTRZNE W PRZEKROJACH I-I, II-II NA KIERUNKU X i Y


























SŁUP PRZEKRÓJ PRZYPADKI KIERUNKI









X Y









MSd NSd MSd NSd









[kNm] [kN] [kNm] [kN]









1 I-I max M odp N 12,283 310,674 16,680 308,328









min M opd N 22,146 303,266 28,570 306,716









max N odp M 5,334 430,439 6,217 430,622









II-II max M odp N 11,699 312,122 16,547 315,572









min M opd N 6,765 319,53 10,602 317,184









max N odp M 3,485 439,295 3,956 439,478















































WYZNACZENIE MIMOŚRODU CAŁKOWITEGO W SŁUPIE Z UWZGLĘDNIENIEM JEGO SMUKŁOŚCI








































































































PRZYJMUJE:












η = 1,2










[ - ]














































SŁUP PRZEKRÓJ PRZYPADKI KIERUNKI







X Y







ea ee etot ea ee etot







[m] [m] [m] [m] [m] [m]







1 I-I max M odp N 0,010 0,040 0,060 0,010 0,054 0,077







min M opd N 0,010 0,073 0,100 0,010 0,093 0,124







max N odp M 0,010 0,012 0,027 0,010 0,014 0,029







II-II max M odp N 0,010 0,037 0,057 0,010 0,052 0,075







min M opd N 0,010 0,021 0,037 0,010 0,033 0,052







max N odp M 0,010 0,008 0,022 0,010 0,009 0,023














































WSTĘPNE PRZYJĘCIE ZBROJENIA, OTULINY





































F = 16 [mm] Zbrojenie główne












Φst = 8 [mm] Strzemiona












cnom = 20 [mm] Otulina












s = 10 [mm] Sfazowanie




















































































































a1 = 46 [mm]














a2 = 46 [mm]














d = 254 [mm]


















































WYZNACZENIE MIMOŚRODY PRZYŁOŻENIA SIŁY














































































































SŁUP PRZEKRÓJ PRZYPADKI h a1;2 KIERUNEK KIERUNEK





X Y X Y





[m] [m] etot etot es1 es2 es1 es2





[m] [m] [m] [m] [m] [m]





1 I-I max M odp N 0,3 0,046 0,060 0,077 0,164 0,044 0,181 0,027





min M opd N 0,3 0,046 0,100 0,124 0,204 0,004 0,228 0,020





max N odp M 0,3 0,046 0,027 0,029 0,131 0,077 0,133 0,075





II-II max M odp N 0,3 0,046 0,057 0,075 0,161 0,047 0,179 0,029





min M opd N 0,3 0,046 0,037 0,052 0,141 0,067 0,156 0,052





max N odp M 0,3 0,046 0,022 0,023 0,126 0,082 0,127 0,081












































OKREŚLENIE MINIMALNEGO STOPNIA ZBROJENIA







































































SŁUP PRZEKRÓJ PRZYPADKI KIERUNEK fyd AC KIERUNEK

X Y X Y

NSd NSd Asmin Asmax As1;2min As1/2max Asmin Asmax As1/2min As1/2max

[kN] [kN] [kN/m2] [cm2] [cm2] [cm2] [cm2] [cm2] [cm2] [cm2] [cm2] [cm2]

1 I-I max M odp N 310,674 308,328 310000 900 2,7 30,48 1,35 15,24 2,7 30,48 1,35 15,24

min M opd N 303,266 306,716 310000 900 2,7 30,48 1,35 15,24 2,7 30,48 1,35 15,24

max N odp M 430,439 430,622 310000 900 2,7 30,48 1,35 15,24 2,7 30,48 1,35 15,24

II-II max M odp N 312,122 315,572 310000 900 2,7 30,48 1,35 15,24 2,7 30,48 1,35 15,24

min M opd N 319,53 317,184 310000 900 2,7 30,48 1,35 15,24 2,7 30,48 1,35 15,24

max N odp M 439,295 439,478 310000 900 2,7 30,48 1,35 15,24 2,7 30,48 1,35 15,24



































































































WYZNACZENIE ZBROJENIA As2


























SŁUP PRZEKRÓJ PRZYPADKI KIERUNEK KIERUNEK xefflim b d a2 fcd fyd αcc KIERUNEK
X Y X Y X Y
NSd NSd es1 es1 As2 As2
[kN] [kN] [m] [m] [m] [m] [m] [kN/m2] [kN/m2] [cm2] [cm2]
1 I-I max M odp N 310,674 308,328 0,164 0,181 0,55 0,3 0,254 0,046 13300 310000 1 -8,04115043579405 -7,2650767323201
min M opd N 303,266 306,716 0,204 0,228 0,55 0,3 0,254 0,046 13300 310000 1 -6,33894393455335 -5,08131257599256
max N odp M 430,439 430,622 0,131 0,133 0,55 0,3 0,254 0,046 13300 310000 1 -7,17869294509926 -7,01106903380893
II-II max M odp N 312,122 315,572 0,161 0,179 0,55 0,3 0,254 0,046 13300 310000 1 -8,12377219758065 -7,15944108715881
min M opd N 319,53 317,184 0,141 0,156 0,55 0,3 0,254 0,046 13300 310000 1 -8,90867100651365 -8,23681566532258
max N odp M 439,295 439,478 0,126 0,127 0,55 0,3 0,254 0,046 13300 310000 1 -7,36339713864764 -7,27244816532258






































































PRZYJĘCIE WYMIARÓW ZBROJENIA






























F = 16 [mm] Zbrojenie główne












SZTUK = 2 [ - ] Ilość prętów












As2prov = 402,123859659494 [mm2] pow. Zbrojenia
































As2prov
As2min















[cm2]
[cm2]















4,02123859659494 > 1,35 warunek spełniony





























WYZNACZENIE ZASIĘGU STREFY ŚCISKANEJ


































































































































SŁUP PRZEKRÓJ PRZYPADKI KIERUNEK KIERUNEK As2prov fyd d a2 b fcd αcc


X Y X Y


NSd NSd es1 es1



[kN] [kN] [m] [m] [m2] [kN/m2] [m] [m] [m] [kN/m2]


1 I-I max M odp N 310,674 308,328 0,164 0,181 0,000402123859659 310000 0,254 0,046 0,3 13300 1


min M opd N 303,266 306,716 0,204 0,228 0,000402123859659 310000 0,254 0,046 0,3 13300 1


max N odp M 430,439 430,622 0,131 0,133 0,000402123859659 310000 0,254 0,046 0,3 13300 1


II-II max M odp N 312,122 315,572 0,161 0,179 0,000402123859659 310000 0,254 0,046 0,3 13300 1


min M opd N 319,53 317,184 0,141 0,156 0,000402123859659 310000 0,254 0,046 0,3 13300 1


max N odp M 439,295 439,478 0,126 0,127 0,000402123859659 310000 0,254 0,046 0,3 13300 1





















SŁUP PRZEKRÓJ PRZYPADKI KIERUNEK







X Y







ueff ξeff xeff ueff ξeff xeff







[ - ] [ - ] [ m ] [ - ] [ - ] [ m ]







1 I-I max M odp N 0,097 0,102 0,026 0,116 0,124 0,031







min M opd N 0,139 0,151 0,038 0,171 0,189 0,048







max N odp M 0,118 0,126 0,032 0,122 0,131 0,033







II-II max M odp N 0,095 0,099 0,025 0,119 0,127 0,032







min M opd N 0,075 0,078 0,020 0,092 0,096 0,024







max N odp M 0,114 0,121 0,031 0,116 0,123 0,031



























OKREŚLENIE RODZAJU WZORU DO WYZNACZENIA ZBROJENIA







































































































































































SŁUP PRZEKRÓJ PRZYPADKI KIERUNEK





X Y





xeff
2*a2 rodzaj xeff
2*a2 rodzaj





[ m ]
[ m ] wzoru [ m ]
[ m ] wzoru





1 I-I max M odp N 0,026 < 0,092 wzór II 0,031 < 0,092 wzór II





min M opd N 0,038 < 0,092 wzór II 0,048 < 0,092 wzór II





max N odp M 0,032 < 0,092 wzór II 0,033 < 0,092 wzór II





II-II max M odp N 0,025 < 0,092 wzór II 0,032 < 0,092 wzór II





min M opd N 0,020 < 0,092 wzór II 0,024 < 0,092 wzór II





max N odp M 0,031 < 0,092 wzór II 0,031 < 0,092 wzór II

























WYZNACZENIE ZBROJENIA As1




























SŁUP PRZEKRÓJ PRZYPADKI KIERUNEK KIERUNEK









X Y X Y







As1 As1 sztuk sztuk







[cm2] [cm2] [ - ] [ - ]









1 I-I max M odp N 2,144 1,292










min M opd N 0,203 0,944









max N odp M 5,145 4,983 3 3









II-II max M odp N 2,273 1,420










min M opd N 3,297 2,550









max N odp M 5,615 5,530 3 3





























PRZYJĘTE ZBROJENIE































SŁUP PRZEKRÓJ KIERUNEK











X Y











As1PROV As2PROV As1PROV As2PROV











[cm2] [cm2] [cm2] [cm2]











1 I-I 6,03 4,02 6,03 4,02























II-II 6,03 4,02 6,03 4,02




























































WYZNACZENIE NOŚNOŚCI PRZEKROJU BETONOWEGO OSIOWO ŚCISKANEGO




































































SŁUP PRZEKRÓJ bs hs η fcd fyd As1 As2 NRd








[m] [m] [ - ] [kN/m2] [kN/m2] [cm2] [cm2] [kN]







1 I-I 0,3 0,3 1 13300 310000 12,06 8,04 1820,29198247221















II-II 0,3 0,3 1 13300 310000 12,06 8,04 1820,29198247221





































X
Y
X Y X Y fyd fcd a1 a2 b h d lcol
SŁUP PRZEKRÓJ As1PROV As2PROV As1PROV As2PROV es1 es1 es2 es2

[cm2] [cm2] [cm2] [cm2] [m] [m] [m] [m] [kN/m2] [kN/m2] [m] [m] [m] [m] [m] [m]
1 I-I 6,03 4,02 6,03 4,02 0,131 0,133 0,077 0,075 310000 13300 0,046 0,046 0,3 0,3 0,254 4,02
II-II 6,03 4,02 6,03 4,02 0,126 0,127 0,082 0,081





















Wyznaczenie współczynników pomocniczych









































































PRZEKRÓJ X Y










B μs1 μs2 B μs1 μs2










I-I 0,485 0,095 0,037 0,475 0,097 0,036





















II-II 0,506 0,091 0,040 0,501 0,092 0,039
































































































































































X Y














PRZEKRÓJ ξeff





























I-I 1,191 1,176





























II-II 1,104 1,097



















































































X Y










PRZEKRÓJ ξeff
ξefflim ξeff
ξefflim






















I-I 1,191 > 0,55 1,176 > 0,55





















II-II 1,104 > 0,55 1,097 > 0,55








































KOREKTA ξeff






























































X X












PRZEKRÓJ C ξeff C ξeff

























I-I 0,423 0,918 0,431 0,905

























II-II 0,405 0,948 0,410 0,941
































































































X Y












PRZEKRÓJ ks ξeff
ξeff

























I-I -0,637 0,918 -0,580 0,905

























II-II -0,767 0,948 -0,736 0,941












































OBLICZENIE NOŚNOŚCI PRZEKROJU ŚCISKANEGO
















































































































PRZEKRÓJ NRDX NRDY





























I-I 1174,52114503369 1150,71553962607





























II-II 1228,58894227727 1215,35864617554
































































































































SPRAWDZENIE NOŚNOŚCI PRZEKROJU






























PRZEKRÓJ 1/(…)
NSD




























I-I 440,567891714039 > 430,5305 WARUNEK NOŚNOŚCI SPEŁNIONY



















II-II 457,434215735022 > 439,3865 WARUNEK NOŚNOŚCI SPEŁNIONY



















Sheet 3: Stopa


STOPA












Wymiary:





























STOPA SŁUP


A B H Dmin a b


[m] [m] [m] [m] [m] [m]


1,1 1,1 0,5 1 0,3 0,3









KOMBINACJE OBCIĄŻEŃ











KIERUNEK PRZYPADKI X


MSd NSd TSd

[kNm] [kN] [kN]

X max M odp N odp T 11,699 312,122 8,255







odp M max N odp T 3,485 439,295 2,151







Y max M odp N odp T 16,547 315,572 11,004







odp M max N odp T 3,956 439,478 2,481






















OKREŚLENIE PARAMETRÓW GEOTECHNICZNYCH W POZIOMIE POSADOWIENIA




























ID piaski śred. Grube mało wilgotne










charakterystyczne obliczeniowe









f 34,2 30,78









gD 18 16,2









gB 18 16,2









NC 0










ND 20,63










NB 8,85























WYZNACZENIE MIMOŚRODÓW OBCIĄŻENIA




























KIERUNEK PRZYPADKI










e1,2
L/6


















[m]
[m]







X max M odp N odp T 0,072 < 0,18







odp M max N odp T 0,015 < 0,18







Y max M odp N odp T 0,099 < 0,18







odp M max N odp T 0,017 < 0,18






















OBCIĄŻENIA




























































GR = 35,20495 [kN]

























Wyznaczenie naprężeń granicznych qfNb






























































































































































Współczynniki wpływu nachylenia wypadkowej obciążenia




















































































KIERUNEK PRZYPADKI










Nr _ eL _ tgdL tgθu( r) tgθu(r)/tgdL iB iD


B
L

[kN] [m] [m] [m]

X max M odp N odp T 347,32695 1,1 0,091 0,91773369443402 0,026 0,596 0,044 0,850 0,850

odp M max N odp T 474,49995 1,1 0,019 1,06155531733986 0,005 0,596 0,008 0,95 0,95

Y max M odp N odp T 350,77695 1,1 0,126 0,848569568211366 0,035 0,596 0,059 0,85 0,85

odp M max N odp T 474,68295 1,1 0,022 1,05621077184255 0,006 0,596 0,009 0,95 0,95

























SPRAWDZENIE SGN FUNDAMENTU






















WARUNEK I STANU GRANICZNEGO ZE WZGLĘDU NA WYPARCIE GRUNTU



















KIERUNEK PRZYPADKI qfNB QfNB=QfNL m m*QfNB=m*QfNL
Nr












[kN/m2] [kN] [kN]
[kN]


X max M odp N odp T 873,14 881,443 0,81 713,969 > 347,32695


odp M max N odp T 918,12 1072,095 0,81 868,397 > 474,49995


Y max M odp N odp T 906,34 846,004 0,81 685,263 > 350,77695


odp M max N odp T 919,89 1068,753 0,81 865,690 > 474,68295
















WARUNEK I STANU GRANICZNEGO ZE WZGLĘDU NA PRZESÓW STOPY FUNAMENTOWEJ


W POZIOMIE POSADOWIENIA ZE WZGLĘDU NA MAŁE SIŁY POMIJAM


















OBLICZENIE NAPRĘŻEŃ




























































































































KIERUNEK PRZYPADKI M Nr W qrmax qrmin qrmax /qrmin







[kNm] [kN] [m3] [kN/m2] [kN/m2]



X max M odp N odp T 15,8265 347,327 0,157 387,942863012311 186,151269219093 2,08 < 3

odp M max N odp T 4,5605 474,500 0,157 421,222442304444 363,074995712085 1,16 < 3

Y max M odp N odp T 22,049 350,777 0,157 430,46327124011 149,333340330138 2,88 < 3

odp M max N odp T 5,1965 474,683 0,157 425,428256695139 359,171660660232 1,18 < 3
















SPRAWDZENIE SGU



































































































KIERUNEK PRZYPADKI WARUNEK I WARUNEK II




qrmax
1,2*m*qf qrs
m*qf









X max M odp N odp T 387,943 < 848,694201587454 287,047066115702 < 707,245167989545




odp M max N odp T 421,222 < 892,409363553607 392,148719008264 < 743,674469628006




Y max M odp N odp T 430,463 < 880,964744399287 289,898305785124 < 734,137286999405




odp M max N odp T 425,428 < 894,129010900429 392,299958677686 < 745,107509083691



















WYZNACZENIE ZBROJENIA ZE WZGLĘDU NA ZGINANIE






















KIERUNEK PRZYPADKI qrmax qKrawędziowe qrśr







Ma-a






[kN/m2] [kN/m2] [kN/m2] [kNm]






X max M odp N odp T 387,943 259,530 323,736 25,899






odp M max N odp T 421,222 384,220 402,721 32,218






Y max M odp N odp T 430,463 251,562 341,013 27,281






odp M max N odp T 425,428 383,265 404,347 32,348





















PARAMETRY STALI ZBROJENIOWEJ























Stal A-II










fyk = 355 [Mpa] Tab.nr3










fyd = 310 [Mpa] Tab.nr3










fdk = 480 [Mpa] Tab.nr3










xefflim 0,55 [-] Tab.nr 9










cmin 40 [mm]











F 12 [mm]











d 0,4480 [m]








































































































































KIERUNEK PRZYPADKI d As1 Asmin F szt. As1prow rozstaw











[m] [cm2] [cm2] [mm]
[cm2] [m]



X max M odp N odp T 0,4480 2,19 7,22 12 7 7,92 0,14



odp M max N odp T 0,4480 2,73 7,22 12 7 7,92 0,14



Y max M odp N odp T 0,4480 2,31 7,22 12 7 7,92 0,14



odp M max N odp T 0,4480 2,74 7,22 12 7 7,92 0,14

































SPRAWDZENIE PRZEBICIA NIE JEST POTRZEBNE













































































































SPRAWDZENIE STOPY ZE WZGLĘDU NA DOCISK





















































DANE DO OBLICZEŃ
























fcd AC0 AC1 ωU σCUM νCU fcud αCU













[kN/m2] [m2] [m2] [kN/m2] [kN/m2]






13300 0,09 0,16 1,33333333333333 0 1,33333333333333 17733,3333333333 1





















SPRAWDZENIE WARUNKU
























































NSD
NRD























[kN]
[kN]











474,68295 < 2837,3 dodatkowe zbrojenie ze względu na docisk nie jest wymagane










Wyszukiwarka

Podobne podstrony:
obliczenia SLUP STOPA
Modelowanie w Robocie (płyta słup)(1)
Projekt 2 Plyta Slup Guide cz II
Kopia OBLICZANIE ŚWIATEŁ MOSTÓW I PRZEPUSTÓW
Konspekt do wykładu płyta słup i strop grzybkowy marzec 2010
Przekrój poprzeczny płyta słup
przyklad stropu SLUP i STOPA
EC2 słup stopa przykład
297x350mm rys 4 0 slup stopa DS id 32257 (2)
Konspekt do Wykladu Ramy zelbetowe cz II przegubowe polaczenie slup stopa
Słup i stopa
obliczenia plyta
Płyta słup i schody
Modelowanie w Robocie (płyta słup)(1)
Projekt 2 Plyta Slup Guide cz II
Przekrój poprzeczny płyta słup
Kopia obliczenia
Kopia obliczanie parametru a R500

więcej podobnych podstron