cwV (2)


Dariusz Szufłat

Tadeusz Kominek

Mariusz Fornal

Numer grupy : 304

Ochrona Środowiska

Ćw nr. 56

Temat

Wpływ temperatury na przewodnictwo

elektryczne przewodników i

półprzewodników

  1. Wstęp teoretyczny

Opór elektryczny przewodnika - jest wprost proporcjonalny do jego długości , odwrotnie proporcjonalny do pola przekroju i zależy od rodzaju materiału , z jakiego wykonany jest przewodnik .

Dla niewielkich przedziałów temperatur ΔT przyjmuje się że oporność właściwa metali liniowo zależy od temp. tzn. :

p = p0 ( 1 + αΔT )

gdzie : p0 - oporność właściwa metalu w temp. początkowej

α - temperaturowy współczynnik zmiany oporności właściwej

α = p - p0 / p0 ΔT

Prawo Debey'a - w temperaturach bliskich zeru bezwzględnemu ,ciepło właściwe ciał

stałych jest proporcjonalne do trzeciej potęgi temperatury bezwzględnej .

Wyjaśnia charakter drgań sieci krystalicznej ciał w temperaturach niższych od pewnej temperatury charakterystycznej , zw. Temperaturą Debey'a , zależnejb od właściwości sprężystych badanego ciała .

Nadprzewodnictwo - właściwość pewnych substancji polegająca m.in. na zaniku oporu

elektrycznego w temperaturze niższej od charakterystycznej dla danej substancji temperatury krystalicznej .

Przewodniki - ciała , w których występują swobodne elektrony lub jony , dzięki czemu łatwo przewodzą one ładunek elektryczny . ( wszystkie metale )

Półprzewodniki - mają zdolność przewodzenia ładunku elektrycznego większą niż izolatory , lecz o wiele mniejszą niż przewodniki . Mają one budowę krystaliczną , a nośnikami ładunku elektrycznego są w nich nie tylko elektrony , lecz także dodatnie

„ puste miejsca po elektronach „ . ( krzem , german , selen )

Półprzewodniki dzielimy na:

„n” -domieszkami są pierwiastki pięcio wartościowe np. fosfor . Półprzewodniki tego typu mają wolne elektrony ,

nazywamy je donorami.

„p” -domieszkami są pierwiastki truj wartościowe np. bor,

glin. Półprzewodniki tego typu mają tzw. dziury czyli miejsca na elektron, nazywamy je akceptorami.

W półprzewodnikach w miarę wzrostu temperatury zwiększa się energia ruchu cieplnego atomów, dzięki czemu dzięki zderzeń więcej elektronów może uzyskać energię wystarczającą do przejścia z pasma walencyjnego do pasma przewodnictwa. Tym samym ze wzrostem temperatury wzrasta liczba generowanych par nośników ładunku: elektron-dziura, a co za tym idzie maleje opór elektryczny półprzewodnika. Zjawisko ma więc charakter odwrotny niż w przypadku metali, które w tych samych war wykazują wzrost oporu elektrycznego (związane jest to z tzw. Pojęciem Fermego).

II. Przebieg ćwiczenia

i zestawić ich wartości w odpowiednich jednostkach.

Obliczyć szerokość pasma wzbronionego E (w elektronowoltach).

  1. Wyniki pomiarów i obliczenia

  2. T0C

    Przewodnik

    Pólprzewodnik

    ΔT [K]

    R1 [Ω]

    ΔR1 [Ω]

    R1/R2

    T [0K]

    1/T 10-3

    [K-1]

    R2 [kΩ]

    ΔR2 [kΩ]

    Ln R2

    20.7

    0

    17.70

    0

    1

    293.85

    0.003403

    11.13

    0

    2.409644

    25.7

    5

    18.00

    0.3

    1.016949

    298.85

    0.003346

    8.95

    -2.18

    2.191654

    30.7

    10

    18.31

    0.31

    1.034463

    303.85

    0.003291

    7.31

    -1.64

    1.989243

    35.7

    15

    18.65

    0.31

    1.053672

    308.85

    0.003238

    5.7

    -1.61

    1.740466

    40.7

    20

    19.02

    0.37

    1.074576

    313.85

    0.003186

    4.6

    -1.1

    1.526056

    45.7

    25

    19.38

    0.36

    1.094915

    318.85

    0.003136

    3.71

    -0.89

    1.311032

    50.7

    30

    19.70

    0.32

    1.112994

    323.85

    0.003088

    3.07

    -0.64

    1.121678

    55.7

    35

    20.07

    0.37

    1.133898

    328.85

    0.003041

    2.56

    -0.51

    0.940007

    60.7

    40

    20.43

    0.36

    1.154237

    333.85

    0.002995

    2.21

    -0.35

    0.792993

    65.7

    45

    20.80

    0.37

    1.175141

    338.85

    0.002951

    1,8

    -0.41

    0.587787

    70.7

    50

    21.14

    0.34

    1.19435

    343.85

    0.002908

    1.56

    -0.24

    0.444686

    75.7

    55

    21,50

    0.36

    1.214689

    348.85

    0.002867

    1.34

    -0.22

    0.131028

    Przewodnik : a - 0.003972 Δa - 2.78 10-5

    b - 0.996002 Δb - 0.001877

    Półprzewodnik : a - 3972.693 Δa - 34. 02061

    b = - 11.1176 Δb - 0.022041

    R\Ro , dla ΔT=0 0x01 graphic
    , ΔT= zmienna

    0x01 graphic
    , ΔT=0 y = b + ax ⇒α = a Δα=Δa

    y = b + ax , x = 0 α= ( 3.9 10-3± 2.78 10-5 )[K-1]

    0x01 graphic

    R/R0= ( 0,99±0.0019 )

    InR = InRpo 0x01 graphic
    , 0x01 graphic
    - zmienna InR = InRpo 0x01 graphic

    y = b + ax ⇒ y = b + ax ⇒

    0x01 graphic
    gdzie k - const. InRpo = b

    E =[JK-1⋅K = J] eb = Rpo

    E = 3972,7 * 1,38 10-23 = e-11 = 1,67-5

    = 5,48 10-20 [J] = 0,3425 [eV]

    ΔE = 0.0029 [eV]

    Przewodnik

    Półprzewodnik

    R/R0(ΔT=0) ±Δ(R/R0)

    α±Δα 10-3 [K-1]

    Rp0±Rp0

    [kΩ]

    E/K

    [K]

    E±ΔE

    [eV]

    0.99± 0.0019

    0,04 10-5± 2.78 10-5

    1,67-5±0,04 10-5

    3972.7

    0.3425±0.0029

    1. Wnioski

    Wpływ temperatury na oporność elektryczną :



    Wyszukiwarka

    Podobne podstrony:
    Sprawozdanie ćwv
    sprawozdanie fizyka cwV
    Cwv
    cwV
    Cwv 2
    cwv

    więcej podobnych podstron