Fizyka 01


KINEMAYKA I DYNAMIKA

Zasada niezależności -Jeśli punkt materialny bierze udział jednocześnie udział w kilku ruchach (ruch złożony) to każdy z tych ruchów (składowych) odbywa się bez zakłóceń tak, jakby pozostałych ruchów nie było. W ruchu złożonym obowiązują następujące zależności - prędkość V ruchu złożonego jest wypadkową prędkości V1, V2...... ruchów składowych V=V1+V2+ ......

- przyśpieszenia a ruchu złożonego jest wypadkową przyśpieszeń a1, a2, .. ruchów składowych a=a1+a2+... Ruch ciała - przez ruch ciała rozumiemy zmianę jego położenia w stosunku do innych ciał, które uważamy za nieruchome.

Ruch krzywoliniowy- może być płaski lub przestrzenny. Przykładem ruchu płaskiego jest ruch po elipsie, po paraboli, po okręgu. Natomiast ruchu przestrzennego, ruch po linii śrubowej.

RYSUNEK1

Δr=r2-r1 r=xi+yj - płaski

Δt=t2-t1 r=xi+yj+zk - przestrzenny

Wektor prędkości średniej jest zgodny co do kierunku z ΔV

Vśr=Δv/Δt Δt→0

Wtedy otrzymujemy prędkość chwilową wektorową w punkcie A 0x01 graphic

Wartość liczbowa wektora V

0x01 graphic

Kierunek wektora prędkości chwilowej jest styczny do toru wdanym punkcie.

0x01 graphic

Przedstawienie wektora prędkości V za pomocą składowych skierowanych wzdłuż osi współrzędnych.

Przyspieszenie0x01 graphic

RUCH OBROTOWY-to taki ruch w którym wszystkie punkty ciała zataczają okręgi prostopadłe do osi obrotu przechodzących przez środki tych okręgów.

x = cosφ

y = sinφ

Rysunek2 φ = φ(t)

Kąt φ można traktować jako tzw. drogę kątową promienia wodzącego. Charakter zależności drogi kątowej od czasu decyduje o tym czy ruch po okręgu jest jednostajny czy zmienny.

0x01 graphic

Pochodną drogi kątowej względem czasu dφ/dt nazywamy prędkością kątową ω V=ωr. Prędkość kątową umówiono się traktować jako wektor prostopadły do płaszczyzny toru kołowego, wyprowadzony z jego środka. Kierunek tego wektora określa reguła korkociągu. W ruchu jednostajnym φ=ωt x=r cosωt y=r sinωt

Vx=-ωr sinωt Vy=ωr cosωt V=ωr=2Πr/T

a=ω2r

W ruchu jednostajnym po okręgu wektor prędkości kątowej jest stały co do wartości, jak i co do kierunku. Przyspieszenie kątowe (α) 0x01 graphic

W ruchu niejednostajnym ω≠const. 0x01 graphic

a = axi+ayj ax=α/ω vx2x ay=α/ω vy2y

a=α/ω v-ω2r

ZASADY DYNAMIKI NEWTONA.

(układy inercjalne i nieinercjalne)

Układy inercjalne - nazywamy układy odniesienia w których spełnione są zasady dynamiki Newtona.

Układy nieinercjalne - nazywamy układy odniesienia w których działają tzw. siły bezwładności.

I zasada dynamiki newtona (zasada bezwładności) jeżeli na ciało nie działają żadne siły zewnętrzne lub działające siły równoważą się to ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym.

II zasada dynamiki newtona

Jeżeli na ciało działa stała niezrównoważona siła zewnętrzna to względem inercjalnego układu odniesienia porusza się ono ruchem jednostajnie zmiennym z przyspieszeniem wprost proporcjonalnym do działającej siły, a odwrotnie proporcjonalnym do masy ciała. 0x01 graphic

III zasada dynamiki newtona

Jeżeli ciało A działa na ciało B siłą FAB to ciało B działa na ciało A siłą FBA równą co do wartości lecz przeciwnie skierowaną. FAB= -FBA

ZASADA d'ALEMBERTA

Ciało spoczywa w układzie nieinercjalnym, gdy suma wszystkich sił działających, łącznie z siłą bezwładności, równa się zero.

Siła bezwładności F0= - maμ jest równa iloczynowi masy ciała przez przyspieszenie ciała aμ

Rozpatrując ruch ciała z punktu widzenia obserwatora znajdującego się w układzie nieinercjalnym tzn. poruszającym ruchem zmiennym względem układu inercjalnego, musimy do siły F1 działającej na ciało w układzie inercjalnym dodawać siłę F0 równa liczbowo iloczynowi masy ciała przez przyspieszenie aμ układu, lecz skierowana przeciwnie względem przyspieszenia układu F2=F1+F0

Siła Coriolisa Fc=2mVω

Siła ta ma kierunek prostopadły zarówno do prędkości V jak i do ω

ac=2(V×ω)

Fc=2m (V×ω)

Rysunek2

ŚRODEK MASY

Środek masy układu n punktów materialnych o masach m1, m2,.....mn jest punktem którego współrzędne xo,yo, zo wyznacza się:0x01 graphic

Ruch postępowy ciała złożonego z szeregu punktów materialnych o łącznej masie mo

moxo= m1x1+m2x2+... x0, x1, x2-jest funkcją mas.

0x01 graphic
Środek masy ciała ma tę właściwość, że iloczyn całkowitej masy mo i przyśpieszenia środka masy ao równa się sumie geometrycznej wszystkich sił działających na poszczególne punkty układu. Siły te można podzielić na siły zewnętrzne Fz i wewnętrzne Fw 0x01 graphic

0x01 graphic
gdyż suma wypadkowa wszystkich sił wewnętrznych równa się zero, ponieważ występujące parami których składniki są równe co do wartości, lecz przeciwnie skierowane.

ZASADA ZACHOWANIA PĘDU.

Jeżeli na ciało lub na układ ciał nie działa żadna niezrównoważona siła zewnętrzna to ciało lub układ nie zmienia swojego pędu. p=mV

ZASADA ZACHOW. ENERGI MECHANICZNEJ jeżeli na ciało nie działa żadna siła zewnętrzna oprócz siły ciężkości to ciało nie zmienia swojej energii mechanicznej E=Ek+Ep=const

MECHANIKA BRYŁY SZTYWNEJ

Ciało którym nie zmienia się odległość dwóch dowolnie wybranych punktów mimo działania sił zewnętrznych nazywamy bryłą sztywną. Ciało sztywne wykonuje ruch postępowy jeżeli odcinek łączący dwa dowolne punkty tego ciała pozostaje równoległy do toru ruchu.

RUCH DRGAJĄCY. PROSTY HARMONICZNY

Jest to ruch drgający ciała w którym wychylenie ciała od położenia równowagi jest wprost proporcjonalne do działającej siły. Warunek ruchu harmonicznego. F=-kx k=mω2 k-współ. Sprężystości. 0x01 graphic
Ep= pracy którą ciało drgające może wykonać wracając od wychylenia do położenia równa się

Ec=Ek+Ep Ec=1/2mω2A2

RUCH HARMONICZNY TŁUMIONY

Drgania tłumione - są to drgania odbywane w warunkach rzeczywistych, które są połączone z przekazywaniem energii otoczeniu w związku z pokonywaniem sił oporu. W wyniku wykonywanej pracy energia ciała drgającego maleje, zmniejsza się też amplituda drgań.0x01 graphic

Drgania wymuszone - są to drgania powstające wtedy, gdy punkt drgający w ośrodku o stałej tłumienia δ poddany jest dodatkowo działaniu siły F sinusoidalnie zmiennej z biegiem czasu

0x01 graphic

Rezonans. Powstaje gdy pulsacja siły wymuszonej jest tak dobrana, że drgania wymuszone odbywają się z maksymalną amplitudą. 0x01 graphic

PODST. POJĘCIA RUCHU FALOWEGO.

Fale dzielimy na:

Istnienie fal mechanicznych związane jest ze zjawiskiem ruchu występującym w ośrodkach spreżystych istotą takiego ośrodka jest istnienie sił sprężystych wiążących cząstki z których są zbudowane. Wprowadzenie zaburzenia powoduje jego przechodzenie na kolejne sąsiadujące warstwy wprawiając je w ruch drgający.

Ruch falowy związany jest z dwoma procesami: z transportem energii przez ośrodek od cząsteczki do cząsteczki i z ruchem drgającym poszczególnych cząstek dokoła ich położenia równowagi.

Promień fali jest to każdy kierunek rozchodzenia się zaburzenia

Powierzchnia falowa jest to zbiór punktów ośrodka, w których zaburzenie ma tę samą fazę drgania w danej chwili.

Czoło fali jest to powierzchnia fali najdalej odsunięta od źródła.

Fala płaska jej promienie stanowią zbiór prostych równoległych

Fala poprzeczna -kierunek ruchu zaburzenia jest prostopadły do kierunku ruchu drgającego cząsteczki.

Fala podłużna -jest to fala której kierunek ruchu drgającego cząsteczek jest równoległy do kierunku ruchu zaburzenia.

Długość fali odległość między dwiema najbliższymi cząsteczkami ośrodka które mają jednakowe fazy drgań V=λ/T

Rys4

0x01 graphic

prędkość rozchodzenia się fali w pręcie zależy od modułu Younga i gęstości czyli wielkości charakteryzujące jego własności materiału a nie od przekroju czy wywołanego odkształcenia.

Energia i natężenie fali.

Natężenie fali jest to ilość energii przenoszonej w jednostce czasu przez jednostkę powierzchni ustawionej prostopadle do kierunku rozchodzenia się fali. W układzie SI natężenie fali wyraża się w W/m2

Natężenie fali I można powiązać z inną wielkością, a mianowicie z gęstością energii fali.

0x01 graphic

V-prędkość rozchodzenia się fali

ρ-gęstość ośrodka

Uo- amplituda prędkości ruchu harmonicznego

Interferencja jeżeli przez ośrodek sprężysty przechodzą dwie (lub kilka) fale pochodzące z różnych źródeł, to wychyleniu jakiemu podlega każda cząstka ośrodka będzie sumą wychyleń spowodowanych przez poszczególne fale. Oznacza to, że każda z cząstek drgających uczestniczy w kilku wzajemnie nakładających się ruchach, które mogą się osłabiać lub wzmacniać w zależności od tego czy odbywają się w fazach zgodnych czy przeciwnych. Zjawisko polegające na wzmacnianiu i osłabianiu drgań będących wynikiem nakładania się dwóch faz o jednakowych częstotliwościach i zgodnych fazach nazywamy interferencją fal.

Fale stojące. W przypadku interferencji dwóch fal o jednakowych amplitudach, częstościach i prędkościach rozchodzących się w przeciwnych kierunkach powstaje fala stojąca. Fale stojące może powstać również na wskutek interferencji fali.

KINETYCZNO MOLEKULARNA TEORIA GAZÓW. Teoria ta opiera się na następujących założeniach ogólnych:

  1. Ciała mają budowę nieciągłą, składają się z drobnych cząsteczek w postaci atomów lub cząstek (molekułów)

  2. Wymienione elementy budowy ciała są w ciągłym ruchu, wartości liczbowe i kinetyczne kierunki prędkości poszczególnych elementów są różne.

  3. Pomiędzy poszczególnymi elementami budowy ciał występują siły wzajemnego oddziaływania.

Dla gazów: zakładamy, że każda cząsteczka porusza się swobodnie bez działania sił aż do momentu zderzenia z inną cząsteczką albo ścianką naczynia. Stąd wniosek, że odcinki dróg między kolejnymi zderzeniami są przebywane ruchem jednostajnym prostoliniowym. Wobec zupełnej przypadkowości zderzeń drogi te mają różne długości:

  1. cząstki gazów na siebie nie działają aż do momentu zderzenia

  2. rozmiary cząsteczek można pominąć, traktując je jako punkty. Cząsteczki podczas zderzeń zderzają swe prędkości. Zderzenie cząstek gazowych można traktować jako zderzenie doskonale sprężyste. Średnią długość ruchu prostoliniowego przebiegu między dwoma zderzeniami wyliczono z bardzo wielkiej liczby tych przelotów nosi nazwę średniej drogi swobodnej.

Kinetyczna interpretacja ciśnienia założenia dla interpretacji ciśnienia:

  1. gaz jest zawarty w naczyniu kulistym o promieniu r

  2. gaz jest tak zamknięty, że można brać pod uwagę tylko zderzenia za ściankami naczynia zaniedbując zderzenia międzycząsteczkowe.

RYS 5

0x01 graphic

Zmiana pędu odpowiadająca n uderzeniom (w czasie 1s) będzie miarą siły oddziaływanie 1 cząsteczki na ściankę naczynia wyraża się wzorem F=2mvcosα=mv2/2

0x01 graphic

Kinetyczna interpretacja temperatury.

0x01 graphic

Zakładamy, że badana ilość gazu odpowiada 1 molowi.

V=Vm pVm=RT N=NA

0x01 graphic

Średnia energia kinetyczna ruchu postępowego cząsteczek jest tylko funkcją temperatury bezwzględnej. Nie zależy od rodzaju gazu ani od jego ciśnienia. Temperatura jest wielkością statyczną. Zakładamy, że dwa różne gazy mają jednakową temperaturę, cząsteczki pierwszego gazu mają masę m1, a drugiego m2 0x01 graphic

Gazy rzeczywiste i równanie van der Waalsa.

Rys s.5

Dla gazów rzeczywistych przy ciśnieniach 106-107 N/m2 można stosować prawo Bogle`a-Mariotte`a 0x01 graphic

Równanie Bogle`a-Mariotte`a odnosi się do przemian izotermicznych określonej masy gazu.

T=const. To EKŚR=CONST N=const. Stąd pV=const.

Prawo Avogarda.

Mówi że w jednakowych objętościach różnych gazów mierzonych pod tym samym ciśnieniem i w tej samej temp. Znajduje się jednakowa liczba cząstek 0x01 graphic

0x01 graphic

Wobec równości p,V oraz średnich energii kinetycznych cząstek obu gazów. N1=N2

Całkowita energia wewnętrzna U gazu rzeczywistego nie równa się, jego energii kinetycznej, gdyż między cząsteczkowe, nieznaczne zresztą oddziaływania decydują o istnieniu energii potencjalnej Ep U=Ep+Ek

Wartość energii wewnętrznej gazu rzeczywistego zależy w dużym stopniu od zagęszczenia gazu.

Um=Em(energia molowa)

0x01 graphic

Równanie van der Waalsa

Van der Waals uwzględnił zaniedbane w przypadku gazu doskonałego.

  1. siły między cząstkowe gazu

  2. objętość własność cząstek gazu

Uwzględnienie sił spójności między cząsteczkami gazu sprowadza się do wyznaczenia poprawki na ciśnienie. Aby otrzymać wartość ciśnienia wewnętrznego, trzeba do ciśnienia zmierzonego dodać poprawę a/Vm2 chemiczna dla danego gazu

pVm=RT Vm-oznacza objętość naczynia zawierającego 1 mol gazu a-stała charakterystyczną dla danego gazu rzeczywistego.

Uwzględniając objętości własne cząsteczek musimy przyjąć, że objętość w której mogą się poruszać cząstki gazu, jest zmniejszona o pewną wartość zależną od objętości własnej cząsteczek. Druga poprawka b(stała dla danego gazu) powinna być czterokrotnej objętości własnej cząstek wchodzących w skład jednego mola.

Równanie van der Waalsa.

0x01 graphic

ZJAWISKO TRANSPORTU ENERGI, MASY I PĘDU

Zjawisko transportu czyli przenoszenie.

Transport energii - przewodnictwo cieplne

Przez przewodnictwo cieplne rozumiemy przenoszenie energii cieplnej wywołane istnieniem gradientu temperatury.

Rys6

Różnica temperatury w różnych obszarach wiąże się z istnieniem różnic energii kinetycznych cząstek w tych obszarach. Ale z biegiem czasu na skutek nieuniknionych zderzeń międzycząsteczkowych odbywa się stopniowe wyrównywanie się średnich Ek a tym samym i temperatur. Każda z cząstek przenosi przez przekrój B tę ilość energii, którą uzyskała w czasie ostatniego zderzenia, które nastąpiło w odległości równej średniej drodze swobodnej l od przekroju B. Ponieważ gradient temperatury w obszarze między A i C równa się dT/dx, a więc różnica temperatur na odległości l wynosi (dT/dx)l, z tym że po prawej stronie od B mamy spadek temperatury równy (-dT/dx)l, po lewej stronie zaś wzrost równy (dT/dx)l. Jeżeli założymy, że przekrojowi B odpowiada temperatura T, to energię kinetyczną cząsteczki dochodzącej do B od lewej strony można wyrazić wzorem 0x01 graphic

a z prawej 0x01 graphic
m-masa cząsteczki

Oznaczając liczbę cząstek w jednostce objętości n, a ich prędkość średnią przez vŚR.. Wtedy energia przeniesiona w jednostce czasu przez jednostkową powierzchnię wyciętą z B wyrazi się wzorem:0x01 graphic

Transport masy - dyfuzja

Warunkiem wystąpienia procesu dyfuzji jest istnienie różnicy stężeń w różnych punktach obszaru zajmowanego przed dyfuzujące ciała

Rys.7

Gdyby cząsteczki gazów poruszały się bez zderzeń procesy dyfuzji zachodziły by bardzo szybko, tego jednak doświadczenia nie wykazują. Wskutek zderzeń międzycząsteczkowych każda cząstka gazu mimo, że przebiega w ciągu jednej sekundy drogę kilkuset metrów, to jednak ostatecznie w tym czasie mało się oddala od swego położenia początkowego. Im większa jest liczba zderzeń na sekundę, czyli im mniejsza jest średnia droga swobodna tym wolniej przebiega proces dyfuzji

Gęstość strumienia dyfuzji dφd=1/3(vśr)l(dc/dx)

D=1/3vśrl

Współczynnik dyfuzji jest proporcjonalny do średniej prędkości ruchu cieplnego gazu i do średniej drogi swobodnej

Transport pędu - lepkość

Rys.7

Niech laminarny przepływ gazu odbywa się w kierunku poziomym. W tych warunkach prędkość przepływu gazu w poszczególnych warstwach poziomych jest stała, zmienia się natomiast przy przejściu od warstwy do warstwy. Biorąc pod uwagę prędkość przepływu gazu w odległości średniej drogi swobodnej l po obu stronach c i uwzględniając fakt, że masy przenoszone w obu kierunkach przez jednostkową powierzchnie w jednostce czasu są jednakowe i równe 1/6 ρvśr to gęstość

strumienia pędu równa się:

0x01 graphic

Współczynnika k lepkości gazów zależy od temperatury, gdyż vśr jest funkcją temp. Ze wzrostem temp. rośnie vśr i rośnie η

Zestawienie wielkości kinetycznych i dynamicznych w ruchu postępowym i obrotowym

Ruch postępowy Ruch obrotowy

0x01 graphic
0x01 graphic

PODST. POJĘCIA TERMODYNAMICZNE

Układ termodynamiczny - zwany ciepłem roboczym np. gaz w zbiorniku zamknięty tłokiem.

Przemiana kołowa - stan początkowy i końcowy jest jednakowy

Przemiana otwarta - stan początkowy i końcowy jest różny ΔW=pSΔx=pΔV - rozprężanie gazu w cylindrze

Pracę uważamy za ujemną, jeżeli jest ona wykonana przez siły zewnętrzne na układzie, gdy układ wykonuje pracę dzięki działaniu sił wewnętrznych.

Jeżeli ΔQ=ΔW jest to tzw. obieg prosty (kosztem dostarczonego ciepła układ wykonuje pracę).

Jeżeli ΔQ i ΔW są ujemne jest to tzw. obieg odwrotny (kosztem dostarczonej pracy układ oddaje ciepło)

I zasada termodynamiki

W układzie zamkniętym, w którym zachodzą dowolne zjawiska mechaniczne, cieplne, elektryczne, magnetyczne, chemiczne lub przemiany jądrowe, nie można zmienić całkowitej energii układu U=const a więc ΔU=0

W układzie otwartym zmiana energii wewnętrznej tego układu ΔU może nastąpić albo pod wpływem ciepła Q lub pracy W ΔU=Q+W

Energia wewnętrzna układu U nazywamy sumę wszystkich rodzajów energii danego układu: energia kinetyczna cząstek układu, energii i oscylacji i rotacji cząstek, energii, wiązania, oddziaływań międzycząsteczkowych a nawet energii możliwych przemian jądrowych. Energia wewnętrzna jest to tzw. „funkcją stanu”, tzn. wielkością, której wartość określona jest jednoznacznie przez wartość parametrów stanu. Zmiany energii wewnętrznej są równe różnicy jej wartości w stanach końcowym 2 i początkowym 1 ΔU=U2-U1 Nie zależy ona od prowadzenia przemiany, czyli od drogi po której układ przeszedł od stanu 1 do 2

PRACA

Praca jest miarą zmiany energii. Praca wykonana nad doprowadzeniem układu do tego stanu(zmian energii) może być różna zależnie od sposobu jej wykonania, od drogi po której przebiega dany proces. Najczęściej spotykaną pracą jest praca objętościowa związana ze zmianą objętości układu. Jeżeli zmiana zachodzi przy stałym ciśnieniu zewnętrznym to praca W równa jest iloczynowi ciśnienia p przez zmianę objętości ΔV

W=-pΔV Ew> gdy V< stąd znak minus

CIEPŁO

Energia wewnętrzna zmienia się również, kiedy układ styka się z ciałem układem o innej temperaturze, wówczas następuje transport energii wewnętrznej z ciał układów o wyższej temperaturze do ciał układów o niższej temperaturze. Ten sposób wymiany energii wewnętrznej pod wpływem różnicy temperatur nazywa się ciepłem.

ENTROPIA

Entropię S definiuje się tak, że jej zmiana w procesie odwracalnym jest ilorazem ciepła Q przeniesionego w stałej temperaturze T i tej temperatury

0x01 graphic

Entropia jest dodatnia gdy ciału dostarczone jest ciepło(z otoczenia), entropia osiąga wartość max. w stanie równowagi

PROCESY ODWRAC. I NIEODWRACALNE

II ZASADA TERMODYNAMIKI

II zasada termodynamiki w jakimkolwiek procesie zachodzącym w układzie zamkniętym entropia nie może maleć. W procesach odwracalnych zmiana entropii jest równa stosunkowi ciepła Q do temperatury bezwzględnej To, a w procesach nieodwracalnych jest większa od tego stosunku.

Proces odwracalny jest to dowolny proces jeśli układ może go przebywać przechodząc przez te same stany zarówno w jednym jak i w drugim kierunku, przy czym po powrocie układu do stanu wyjściowego nie powstają żadne zmiany w otoczeniu układu (proces kołowy, ruch wahadła odbywający się bez tarcia)

Proces nieodwracalny są to wszystkie procesy rzeczywiste, tzn. nie dają żaden sposób cofnąć tak aby nie powstały jakieś zmiany w otoczeniu.

Wszystkie procesy zachodzące w przyrodzie samodzielnie przebiegają w jednym kierunku i są nieodwracalne.

Prawdopodobieństwo termodynamiczne - jest to liczba stanów mikroskopowych, które mogą realizować dany stan makroskopowy.

STATYSTYCZNA INTERPRETACJA ENTROPII

W każdym zjawisku odbywającym się na skalę makroskopową bierze udział olbrzymia liczba cząstek wykonujących ruchy drgające lub poruszających się ruchem jednostajnym. Prawdopodobieństwo istnienia zupełnego braku uporządkowania tych cząstek, tak znacznie przewyższa prawdopodobieństwo wystąpienia pewnego uporządkowania, że wszelkie samorzutne zjawiska prowadzą zawsze do stanu większego chaosu. Przechodzenie układu ze stanu o mniejszym prawdopodobieństwie dynamicznym do stanu o większym prawdopodobieństwie jest równoznaczne z przejściem do stanu większej entropii. Jeśli entropia układu wzrasta tzn. układ przechodzi do stanu bardziej prawdopodobnego, maleją bodźce powodujące to przejście i chociaż całkowita energia układu jest stała, ilość energii, która mogłaby być wykorzystana w dalszych przemianach maleje. Wzrost entropii układu jest jednoznaczny ze zmniejszeniem przydatności układu do wykonania pracy.

CIAŁO DOSKONALE CZARNE

Ciało jest to źródło sztucznie wytworzone o max zdolności w każdej temp. i 100% absorpcji padającego promienia również w każdej temp. Właściwości ciała doskonale czarnego wykazuje niewielki otwór utworzony w powierzchni kuli wydrążonej, poczerniony w środku. Energia promieniowania wynikająca przez taki otwór do wnętrza kuli zostaje praktycznie całkowicie pochłonięta podczas licznych odbić od powierzchni wewnętrznej. Z padającego pierwotnie na otwór promienia żaden promień nie przenika z kuli na zewnątrz, otwór więc zachowuje się jako ciało doskonale czarne.

Rys.10

TEORIA PLANCKA

W celu wytłumaczenia rozkładu natężeń ciała doskonale czarnego Planck wysunął w 1900 hipotezę, że atomy wysyłają energię promienistą nie w sposób ciągły, lecz w postaci określonych porcji zwanych kwantami.

PRAWO PLANCKA

Pojedynczy kwant ma energie E proporcjonalną do częstotliwości f promieniowania V h=6,625*10-34Js

h - stała Plancka E=h*V

PRAWO STEFANA BOLTZMANA

Całkowita energia promieniowania widzialnego i nie widzialnego wysyłana przez jednostkę powierzchni ciała doskonale czarnego w jednostce wyraża się wzorem: E=δT4

δ - stała Boztzmana = 5,669*10-8W/m2K4

1

1



Wyszukiwarka

Podobne podstrony:
fizyka d 01 AAGWXCYW57QU22YIEVTSS2RK6RUKLSGPWRNDI3I
fizyka 01 Kinematyka 1
AGH e-Fizyka 01 Mechanika 1, Fizyka i Fizyka chemiczna
fizyka"01
Fizyka 01 id 175668 Nieznany
!fizyka27 01 04 druk
Fizyka 01
kolokwium 14 01 10, polibuda, 3 semestr, fizyka i inżynieria materiałowa (kolokwia, sprawozdania, w
202 01, Politechnika Poznańska, Mechatronika, Semestr 01, Fizyka - laboratoria
a06 fizyka czasteczkowa wstep (01 10) AOAV576Y2MYTPU7CD (2)
301 01, Politechnika Poznańska, Mechatronika, Semestr 01, Fizyka - laboratoria
Fizyka modul 01
Kolos fizyka MCH1 01 2016
C22 Fizyka jadra atomowego(01 12)
304 01, ZiIP Politechnika Poznańska, Fizyka II, Ćwiczenia
01(1), Studia, Fizyka, LABORKI, Fizyka ED1 Sprawozdania
01 Fizyka Zagadnienia na egzaminid 2610
01-02-2004 Egzamin z fizyki, Mechanika i Budowa Maszyn PG, semestr1, Fizyka
01 Wyznacznie szerokosci szczelin', Księgozbiór, Studia, Fizyka

więcej podobnych podstron