f(x, y) = x3 + xy2 + 6xy + 1.
z = 6 - x2 - y2, z = x2 + y2.
-xy2dy + x2ydx,
K
K x2 + y2 = 1
y
y + = x.
x
x
y + 5y + 6y = .
f(x) = x [-Ä„, Ä„]
"
f(x, y) = y x - y2 - x + 6y.
z = 6 - x2 - y2, z = x2 + y2.
(2x3 - 11y)dx + (4x + sin y)dy,
K
K x2 + y2 = 16
"
xy - 4y = x2 y
y(1) = 1
2x
y + 2y + 2y = + 1.
f(x) = |x| [-Ä„, Ä„]
f(x, y) = x3 + xy2 + 6xy + 1.
x2 + y2 + z2 9, x2 + y2 4, z 0.
-xy2dy + x2ydx,
K
K x2 + y2 = 1
2y ln x
y + = y2 , y(1) = 4.
x x
2x
y - 4y + 4y = x .
f(x) = x2 [-Ä„, Ä„]
"
y = arctgx, x " [0, 1]
Ox
z = x2 + y2 + 4, z = 6 - x2 + y2.
-xydx + (y2 + 1)dy,
C
C
D = (x, y) " R2 : 0 y x2, 0 x 1 .
2yy - y2 - x = 0.
y + 4y = 1 + x.
0 - Ä„ < x < 0
f(x) = .
1 0 x < Ä„
1
y =
x2 + 4x + 5
x " [0, 1]
z = 3 - x2 - y2, z = 2 x2 + y2.
x2
y + y =
y2
y(0) = 1
y + 4y = 2 cos 3x.
ex(1 - cos y)dx - ex(1 - sin y)dy,
C
C y = sin x y = 0 x " [0, Ä„]
Å„Å‚
ôÅ‚
òÅ‚0 x " (-Ä„, 0)
Ä„
f(x) = 2 x " 0,
ôÅ‚
ół0 x " Ą , 2
0
2
"
f(x, y) = y x - y2 - x + 6y.
x2 + y2
z = 4 - x2 - y2, z = " .
3
xy - y = x2e-2x
y(1) = 1
y + 9y = x2 + 3.
(4,2)
2xydx + x2dy,
(0,0)
y = x2
(1 - x2)dx + x(1 + y2)dy
L
L
"
y = x + 4, y = 0, x = 0.
f(x, y) = x3 + 3xy2 + 12xy.
V = {(x, y, z) " R3 : x2 + y2 + z2 4, x2 + y2 3z}.
y + y = xy-6
y(0) = 2
y + 3y = e-3x.
x(y + z)dl,
L
Å„Å‚
ôÅ‚
ôÅ‚x = cos t
òÅ‚
y = sin t , t " [0, Ä„]
L : .
ôÅ‚
ôÅ‚z = 3t
ół
4
xydx - xdy
L
L
"
y = x, y = 0, x " [1, 2].
1
y = , y = 0, x " [-2, 1].
x2 + 4x + 13
y
arctg dxdy,
x
D
D = {(x, y) : 4 x2 + y2 16, -x y, y x}
x
y + y =
y
y(0) = 1
y - 6y + 10y = cos 2x.
xdx - x2dy,
K
K x2 + y2 = 8x
Ä„
1 x " 0,
4
f(x) =
Ä„
2 x " , Ä„
4
"
y = xe-2x
Ox 0 x 1
ln(x2 + y2) dxdy,
D
D = {(x, y) : r2 x2 + y2 R2, r, R > 0}
x
y + xy =
y3
y(0) = 2
y + 4y + 5y = 2 sin 2x.
y(x - y)dx + xdy,
K
K y2 = 4x A(1, -2) B(0, 0)
Ä„
0 x " 0,
2
f(x) =
Ä„
2 x " , Ä„
2
1
y = , y = 0, x " [0, 1].
x2 + 4x + 8
xy dxdy,
D
D = {(x, y) : x2 + y2 2x}
(x + y2)dx + 2xydy = 0
y(1) = 2
y + 3y = 3-3x.
y(x - y)dx + xdy,
K
K (0, 0)
(2, 0) (1, 1)
Ä„
0 x " 0,
2
f(x) =
Ä„
2 x " , Ä„
2
x = a(cos t + t sin t) Ä„
K : t " 0, .
2
y = a(sin t - t cos t)
z = x2 + y2, z = 6 - x2 - y2.
x2
y + y = ,
y
y(0) = 1
y + 5y = 2 cos 3x.
ex(1 - cos y)dx - ex(1 - sin y)dy,
C
C y = sin x y = 0 x " [0, Ä„]
Å„Å‚
ôÅ‚
òÅ‚0 x " (-Ä„, 0)
Ä„
f(x) = 2 x " 0,
ôÅ‚
ół0 x " Ą , 2
Ä„
2
"
x2+y2
xy · e
,
x2 + y2
D
D = {(x, y) : x2 + y2 4, y |x|}
z = 8 - x2 - y2 + z2, z = 2 + x2 + y2, x2 + y2 = 1, x = 0, y = 0
x2 + y2 1 x 0 y 0
x2 + y2dl,
L
Å„Å‚
ôÅ‚
òÅ‚x = cos t + t sin t
L : y = sin t - t cos t, t " [0, Ä„] .
ôÅ‚
ółz = ln 5
arctgy y arctgx x
+ dx + + + 2y dy,
1 + x2 x 1 + y2 y
K
K y = x A(1, 1) B(2, 2)
(x2 + y2)dxdz,
S+
1
S+ y = a2 - x2 - z2 y = a2
2
"
3n
3n + 1 1
(-1)narctg · · xn.
3n e
n=1
Ox
1
y = "
x2 - 1
2 x y
z2 = x2 + y2, x2 + y2 = 4, z 0.
1 1
y + y = y2.
x x
y - 5y - 7y = sin x.
xy
ln(1 + y)dx - dy,
1 + y
C
C A(0, 0) B(2, 0) C(0, 4)
1 x " [-Ä„, 0)
f(x) = .
x x " [0, Ä„)
x2 y3
f(x, y) = + - 2y2 - xy + 6y.
2 3
x = e2t cos t ln 2
L : t " 0, .
2
y = e2t sin t,
B = (x, y, z) " R3 : y 0, x2 + y2 1, 0 z arctg x2 + y2 .
y x
y - = .
x x2 + 1
y - 4y + 3y = x2 + 1.
x2ydy - x2dx,
C
C A(1, 1) B(1, -1)
C(3, -1) D(3, 1)
-x
y = x x 0
Ox
z 9 - x2 - y2 + z2, (x - 1)2 + y2 1, z = 0.
yzdx + zxdy + xydz,
L
at
L x = r cos t y = r sin t z =
2Ä„
z = 0 z = a a, r > 0
yxy-1dx + xy ln xdy = 0.
-3x
y + 6y + 9y = .
"
n(x - 1)n
.
n2 + 3n
n=1
1
y = , y = 0.
x2 + 2x + 10
z 9 - x2 - y2, 4x2 + y2 1, z -1.
y · y + y2 = ex.
y + 4y + 4y = e-2x.
(y2 + 2y)dx - (ey + 2x)dy,
C
C (x - 1)2 + y2 = 1
2 x " [-Ä„, 0)
f(x) = .
-x x " [0, Ä„)
"
-x
y = x - 1 ·
Ox
f(x, y) = 2x3 + xy2 + 5x2 + y2.
z = 1 + x2 + y2, z = 9 - x2 - y2.
C : x2 + y2 = 4x,
yxy-1dx + xy ln xdy = 0.
y + 4y + 5y = cos 2x.
Wyszukiwarka
Podobne podstrony:
Mechanika Budowli sem 4 i5 tematy egzaminutematy na egzamin I semtematy egzamin jadlinska 2 sem 2 rokuPrzykładowy egzamin sem III2 1 PodTel wyk? Sem Letni 08 09id883Egzamin tematy egzaminacyjneB01 Tematy egzaminacyjneZagadnienia do testu końcowego ćwiczenia Pomoc społeczna, służby społeczne, praca socjalna sem letn43 Syllabus sem letni 2011 2012Tematy egzaminacyjne Zagr Cywiliz 14hZagadnienia egzaminacyjne sem VI inż luty 2012tematyka egzaminu kwalifikacyjnego dozorwięcej podobnych podstron