2
2
1. Założenia
1.1. Warunki gruntowo wodne
Podłoże gruntowe zbudowane jest z 3 warstw gruntu, nie stwierdzono zwierciadła wody
gruntowej, warstwa nośna gruntu zalega na głębokości większej niż 2B, podłoże można zatem
traktować jako jednorodne.
1. od powierzchni terenu zalega warstwa pospółki:
0
'
,
39
,
5
,
17
57
,
0
'
3
=
°
=
=
=
c
m
kN
I
k
k
D
φ
γ
2. na głębokości 4,3m zalega warstwa
gliny pylastej:
kPa
c
m
kN
I
k
k
L
42
'
,
22
,
21
16
,
0
'
3
=
°
=
=
=
φ
γ
3. poniżej 7,7m znajduje się warstwa
gliny pylastej zwięzłej:
kPa
c
m
kN
I
k
k
L
34
'
,
6
,
19
,
20
31
,
0
'
3
=
°
=
=
=
φ
γ
1.2. Wymiary ławy fundamentowej i warstw odsadzek oraz odpowiadające im ciężary
objętościowe:
~ szerokość ławy
B = 1,0 m
3
25
m
kN
k
=
γ
~ wysokość ławy
h
f
= 0,25 m
~ wysokość warstwy posadzki
h
p
= 0,05 m
3
23
m
kN
k
=
γ
~ wysokość warstwy styropianu
h
st
= 0,05 m
3
20
,
0
m
kN
k
=
γ
~ wysokość warstwy zasypki
h
zas
= 0,25 m
3
5
,
18
m
kN
k
=
γ
2. Obciążenia
– ciężar gruntu od strony zewnętrznej fundamentu
=
⋅
⋅
=
m
kN
W
k
G
7531
,
10
375
,
0
55
,
1
5
,
18
1
– ciężar warstw posadzkowych od strony wewnętrznej
fundamentu
(
)
=
⋅
⋅
+
⋅
+
⋅
=
m
kN
W
k
G
1694
,
2
375
,
0
25
,
0
5
,
18
05
,
0
2
,
0
05
,
0
0
,
23
2
– ciężar własny fundamentu
=
⋅
⋅
=
m
kN
W
k
G
25
,
6
0
,
1
25
,
0
0
,
25
3
łącznie
=
+
+
=
m
kN
W
Gk
1725
,
19
25
,
6
1694
,
2
7531
,
10
Obliczanie mimośrodu dla obciążeń charakterystycznych
stałych:
[ ]
m
V
M
e
B
0489
,
0
1725
,
277
5676
,
13
258
1725
,
19
25
,
0
5
3125
,
0
1694
,
2
3125
,
0
7531
,
10
15
=
=
=
+
⋅
+
⋅
+
⋅
−
=
=
∑
∑
3
Ławę przesunięto w prawo względem osi ściany o e
B
= 5 cm.
Nowe wartości sił na odsadzkach:
– ciężar gruntu od strony zewnętrznej fundamentu
=
⋅
⋅
=
m
kN
W
k
G
9,3194
55
,
1
325
,
0
5
,
18
1
– ciężar warstw posadzkowych od strony wewnętrznej fundamentu
(
)
=
⋅
⋅
+
⋅
+
⋅
=
m
kN
W
k
G
2,4586
425
,
0
25
,
0
5
,
18
05
,
0
2
,
0
05
,
0
0
,
23
2
– ciężar własny fundamentu
=
⋅
⋅
=
m
kN
W
k
G
25
,
6
0
,
1
25
,
0
0
,
25
3
łącznie
=
+
+
=
m
kN
W
Gk
18,028
25
,
6
4586
,
2
3194
,
9
Wartość nowego mimośrodu dla obciążeń
charakterystycznych stałych i zmiennych:
(
)
(
)
[ ]
cm
m
V
M
e
B
58
,
0
0058
,
0
1378
,
482
7939
,
2
73
5
,
1
028
,
18
258
35
,
1
06
,
0
73
25
,
0
3
7
5
,
1
)
25
,
0
5
05
,
0
258
2875
,
0
4586
,
2
3382
,
0
3194
,
9
15
(
35
,
1
=
=
=
=
⋅
+
+
⋅
⋅
−
⋅
+
⋅
+
⋅
+
⋅
−
⋅
+
⋅
−
⋅
=
=
∑
∑
Zredukowana szerokość fundamentu
[ ]
m
e
B
B
B
9884
,
0
0058
,
0
2
0
,
1
2
'
=
⋅
−
=
⋅
−
=
3. Obliczenie nośności podłoża
~ łączna wartość obciążeń obliczeniowych:
(
)
m
kN
H
m
kN
V
d
d
25
,
11
3
5
,
1
5
35
,
1
1378
,
482
73
5
,
1
258
028
,
18
35
,
1
=
⋅
+
⋅
=
=
⋅
+
+
⋅
=
~ obliczeniowy wymiar fundamentu:
[ ]
2
'
884
,
9
0
,
10
9884
,
0
'
m
m
m
L
B
A
B
=
⋅
=
⋅
=
0988
,
0
0
,
10
9884
,
0
'
=
=
L
B
~ współczynniki uwzględniające nachylenie siły wypadkowej działającej w podstawie fundamentu:
91
,
1
0988
,
0
1
0988
,
0
2
'
'
1
'
'
2
=
+
+
=
+
+
=
=
L
B
L
B
m
m
B
4
9336
,
0
0
1378
,
482
25
,
11
1
'
'
'
1
9559
,
0
0
1378
,
482
25
,
11
1
'
'
'
1
91
,
2
1
91
,
1
=
+
−
=
⋅
⋅
+
−
=
=
+
−
=
⋅
⋅
+
−
=
+
m
d
d
m
d
d
q
ctg
c
A
V
H
i
ctg
c
A
V
H
i
φ
φ
γ
~ współczynniki częściowe dla DA2*:
0
,
1
0
,
1
=
=
=
c
M
γ
γ
γ
φ
~ przyjęty kąt tarcia wewnętrznego wynosi
°
=
39
'
k
φ
~ współczynniki kształtu:
– od zagłębienie fundamentu:
062
,
1
6293
,
0
0988
,
0
1
'
sin
'
'
1
=
⋅
+
=
⋅
+
=
φ
L
B
s
q
– od ciężaru własnego gruntu:
97
,
0
0988
,
0
3
,
0
1
'
'
3
,
0
1
=
⋅
−
=
⋅
−
=
L
B
s
γ
~ współczynniki nośności granicznej
+
⋅
=
⋅
2
45
2
'
φ
φ
π
tg
e
N
tg
q
808
,
55
2
39
45
2
39
=
°
+
⋅
=
°
⋅
tg
e
N
tg
q
π
(
)
'
1
2
φ
γ
tg
N
N
q
⋅
−
⋅
=
(
)
77
,
88
39
1
808
,
55
2
=
°
⋅
−
⋅
=
tg
N
γ
Obciążenie obok fundamentu
0
,
1
=
G
γ
(korzystne)
Naprężenie od warstwy posadzki i zasypki 25cm gruntem sypkim obok fundamentu:
kPa
d
q
kPa
G
f
K
41
,
10
0
,
1
)
25
,
0
5
,
18
785
,
5
(
)
785
,
5
(
'
785
,
5
5
,
18
25
,
0
2
,
0
05
,
0
0
,
23
05
,
0
=
⋅
⋅
+
=
⋅
⋅
+
=
=
⋅
+
⋅
+
⋅
γ
γ
3.1. Sprawdzenie warunku GEO
( )
4
,
1
2
=
RV
R
γ
kPa
s
b
i
N
B
s
b
i
N
q
s
b
i
N
c
A
R
q
q
q
q
c
c
c
c
75
,
1324
67
,
0
0
,
1
9336
,
0
77
,
88
9884
,
0
5
,
18
5
,
0
062
,
1
0
,
1
9559
,
0
808
,
55
41
,
10
0
'
2
1
'
'
'
=
⋅
⋅
⋅
⋅
⋅
⋅
+
⋅
⋅
⋅
⋅
+
=
=
⋅
⋅
⋅
⋅
⋅
⋅
+
⋅
⋅
⋅
⋅
+
⋅
⋅
⋅
⋅
=
γ
γ
γ
γ
γ
γ
γ
γ
γ
γ
s
b
i
N
B
s
b
i
N
q
A
V
q
q
q
q
d
⋅
⋅
⋅
⋅
⋅
⋅
+
⋅
⋅
⋅
⋅
=
'
2
1
'
kPa
A
V
d
8
,
487
0
,
1
9884
,
0
1378
,
482
'
=
⋅
=
5
kPa
kPa
kPa
R
R
V
k
d
d
25
,
946
8
,
487
25
,
946
4
,
1
75
,
1324
4
,
1
<
=
=
=
≤
4. Wymiarowanie ławy fundamentowej
Przy przyjętym przesunięciu osi ławy względem osi ściany o 5 cm
m
e
B
0058
,
0
'
=
Przy obliczaniu momentów zginających uwzględnia się jedynie obciążenia zewnętrzne.
~ wartość obliczeniowa obciążenia pionowego:
kN
V
obl
8
,
457
73
5
,
1
258
35
,
1
=
⋅
+
⋅
=
∑
Wartość naprężeń pod podstawą fundamentu:
kPa
B
e
L
B
V
q
B
obl
Ed
73
,
473
0
,
1
0058
,
0
6
1
0
,
1
0
,
1
8
,
457
6
1
'
max
,
=
⋅
+
⋅
⋅
=
⋅
+
⋅
⋅
=
∑
kPa
B
e
L
B
V
q
B
obl
Ed
87
,
441
0
,
1
0058
,
0
6
1
0
,
1
0
,
1
8
,
457
6
1
'
min
,
=
⋅
−
⋅
⋅
=
⋅
−
⋅
⋅
=
∑
Moment zginający ławę oblicza się w przekroju I-I przesuniętym względem lica ściany o 0,15 jej
szerokości. Długość wspornika s:
m
S
m
S
l
p
3625
,
0
05
,
0
25
,
0
15
,
0
375
,
0
4625
,
0
05
,
0
25
,
0
15
,
0
375
,
0
=
−
⋅
+
=
=
+
⋅
+
=
Naprężenie w przekroju obliczeniowym dla prawego wspornika wyniesie:
kPa
S
B
q
q
q
q
p
Ed
Ed
Ed
EdI
99
,
458
4625
,
0
0
,
1
87
,
441
73
,
473
73
,
473
min
,
max
,
max
,
=
⋅
−
−
=
⋅
−
=
−
6
Moment w obliczeniowym miejscu utwierdzenia prawego wspornika ławy fundamentowej:
m
kNm
S
S
q
q
S
S
q
M
P
p
I
Ed
nax
Ed
p
p
Ed
P
72
,
51
3
2
4625
,
0
2
99
,
458
73
,
473
5
,
0
4625
,
0
73
,
473
3
2
2
2
1
0
,
1
2
2
,
,
max
,
=
=
⋅
⋅
−
+
⋅
⋅
=
⋅
⋅
⋅
−
+
⋅
⋅
⋅
⋅
=
4.1. Zbrojenie poprzeczne na zginanie wsporników ławy żelbetowej
~ beton C20/25,
MPa
f
MPa
f
cd
ctd
3
,
14
10
,
1
=
=
~ stal 34GS,
MPa
f
yd
410
=
otulina c = 5 cm
~ wstępnie przyjęta średnia prętów: 12 mm
Rozmieszczenie zbrojenia:
cm
c
d
d
f
B
4
,
19
2
,
1
5
,
0
5
25
5
,
0
=
⋅
−
−
=
−
−
=
φ
m
cm
m
A
S
2
2
min
,
75
,
3
000375
,
0
0
,
1
25
,
0
0015
,
0
=
=
⋅
⋅
=
4.2. Sprawdzenie na przebicie
Przebicie betonu w ławie żelbetowej może wystąpić pod kątem 45° do osi zbrojenia.
(
)
(
)
kPa
q
kPa
q
III
IV
85
,
445
0
,
1
2
,
0
325
,
0
87
,
441
73
,
473
87
,
441
82
,
453
0
,
1
2
,
0
425
,
0
0
,
1
87
,
441
73
,
473
87
,
441
=
−
⋅
−
+
=
=
−
−
⋅
−
+
=
Siła przebijająca na odcinkach odsadzek
(
) (
)
(
) (
)
m
kN
P
m
kN
P
L
P
48
,
55
2
,
0
325
,
0
85
,
445
87
,
441
2
1
35
,
104
2
,
0
425
,
0
82
,
453
73
,
473
2
1
=
−
⋅
+
⋅
=
=
−
⋅
+
⋅
=
m
cm
m
d
f
M
A
B
yd
P
S
2
2
7
00072
,
0
194
,
0
9
,
0
410000
72
,
51
9
,
0
≈
=
⋅
⋅
=
⋅
⋅
=
7
Większa siła przebijająca działa od strony prawej odsadzki.
Wytrzymałość betonu (C20/25,
MPa
f
MPa
f
cd
ctd
3
,
14
,
10
,
1
=
=
) na przebicie z jednej strony:
.
wystapi
nie
przebicie
220
2
,
0
1
1100
P
ctd
P
P
m
kN
d
l
f
P
>
=
⋅
⋅
=
⋅
⋅
=
5. Osiadanie ławy fundamentowej
5.1. Wartości parametrów geotechnicznych gruntu:
w
n
g
⋅
ρ
E
ok
M
ok
M
k
Rodzaj gruntu
I
D
I
L
%
3
m
kN
MPa
Po
0,57
4
17,5 150,0 170,0 170,0
saclSi
0,16 20 21,0
46,0
52,0
57,8
saCl
0,31 28 20,0
30,0
35,0
38,9
(
)
zd
z
zt
zs
zqA
zdA
zs
zq
zd
z
zs
zq
zqA
zq
zqB
zq
z
z
z
o
z
o
h
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
σ
η
η
σ
σ
γ
σ
ρ
ρ
ρ
ρ
ρ
ρ
ρ
+
=
−
=
−
=
=
∆
+
=
=
∆
−
=
⋅
+
⋅
⋅
=
⋅
=
min
2
1
2
2
8
5.2. Wartości odprężenia podłoża, obciążenia, naprężeń wtórnych i dodatkowych pod ławą A
5.3. Wartości naprężeń pionowych pod ławą A wywołane obciążeniem od sąsiedniego fundamentu
Ława B
kPa
304
=
σ
Obszar
I-III-III’-A
I-II-II’-A
II-III-III’-II’
=
B
L
5
,
2
5
5
,
12
=
3
,
2
5
5
,
11
=
z
B
z
1
η
B
z
2
η
η
zqB
σ
[m]
-
kPa
1
2
3
4
5
6
7
0,00
0
0,25
0
0,25
0
0
0,50
0,1
0,248
0,1
0,248
0
0
1,00
0,2
0,246
0,2
0,246
0
0
1,50
0,3
0,242
0,3
0,242
0
0
2,00
0,4
0,24
0,4
0,241 0,001 0,304
2,50
0,5
0,238
0,5
0,24
0,002 0,608
3,00
0,6
0,235
0,6
0,238 0,003 0,912
3,50
0,7
0,225
0,7
0,23
0,005
1,52
4,00
0,8
0,22
0,8
0,226 0,006 1,824
4,50
0,9
0,21
0,9
0,22
0,01
3,04
5,00
1
0,2
1
0,21
0,01
3,04
5,50
1,1
0,19
1,1
0,2
0,01
3,04
5,90
1,18
0,18
1,18 0,195 0,015
4,56
6,40
1,28 0,163 1,28 0,182 0,019 5,776
6,90
1,38 0,156 1,38
0,18
0,024 7,296
wykop
kPa
op
5
,
31
8
,
1
5
,
17
=
⋅
=
σ
Ława
kPa
op
277
=
σ
Obszar
1-2-A-1’
2-3-3’-A
1-3-3”-1”
-
=
B
L
5
1
5
=
8
,
9
5
49
=
-
10
0
,
1
10
=
-
z
B
z
1
η
B
z
2
η
η
ρ
σ
z
B
z
A
η
A
z
ρ
σ
zs
σ
zdA
σ
[m]
-
kPa
-
kPa
1
2
3
4
5
6
7
8
9
10
11
12
0,00
0,00 0,250 0,00 0,250
1
31,5 0,00 1,00
277
31,5
245,5
0,50
0,50 0,240 0,10 0,249 0,978 30,81 0,50 0,720 199,4 30,81
168,59
1,00
1,00 0,230 0,20 0,247 0,954 30,05 1,00 0,510 141,3 30,05
111,25
1,50
1,50 0,162 0,30 0,245 0,814 25,64 1,50 0,360 99,7 25,64
74,059
2,00
2,00 0,138 0,40 0,243 0,762 24,00 2,00 0,300 83,1 24,00
59,10
2,50
2,50 0,110 0,50 0,240
0,7
22,05 2,50 0,250 69,3 22,05
47,25
3,00
3,00 0,092 0,60 0,238 0,66 20,79 3,00 0,210 58,2 20,79
37,41
3,50
3,50 0,080 0,70 0,232 0,624 19,66 3,50 0,180 50,0 19,66
30,34
4,00
4,00 0,065 0,80 0,225 0,58 18,27 4,00 0,160 44,3 18,27
26,03
4,50
4,50 0,060 0,90 0,220 0,56 17,64 4,50 0,135 37,4 17,64
19,76
5,00
5,00 0,053 1,00 0,210 0,526 16,57 5,00 0,130 36,0 16,57
19,43
5,50
5,50 0,048 1,10 0,200 0,496 15,62 5,50 0,120 33,2 15,62
17,58
5,90
5,90 0,042 1,18 0,197 0,478 15,06 5,90 0,110 30,5 15,06
15,44
6,40
6,40 0,040 1,28 0,183 0,446 14,05 6,40 0,100 27,7 14,05
13,65
6,90
6,90 0,027 1,38 0,180 0,414 13,04 6,90 0,090 24,9 13,04
11,86
9
5.4. Zestawienie wartości naprężeń pierwotnych, odprężenia, naprężeń wtórnych i dodatkowych pod ławą A
z
i
h
( )
n
i
γ
( )
i
n
i
h
γ
ρ
σ
z
ρ
σ
z
min
z
σ
zqA
σ
zq
σ
∆
zq
σ
zs
σ
zd
σ
zdA
σ
ρ
σ
z
5
1
zt
σ
[m]
2
m
kN
kPa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0,00
1,8
31,5
31,5
31,5
0
277
0
277
31,5
245,5
245,5
6,3
277
0,50
0,5
8,75
40,25
30,81
9,44
199,4
0
199,4
30,81
168,59
168,59
8,05
208,84
1,00
0,5
8,75
49
30,05
18,95
141,3
0
141,3
30,05
111,25
111,25
9,8
160,25
1,50
0,5
8,75
57,75
25,64
32,11
99,7
0
99,7
25,64
74,06
74,059
11,55
131,81
2,00
0,5
8,75
66,5
24,00
42,5
83,1
0,304
83,40
24,00
59,1
59,10
13,3
125,6
2,50
0,5
17,5
8,75
75,25
22,05
53,2
69,3
0,608
69,91
22,05
47,25
47,25
15,05
122,5
3,00
0,5
10,5
85,75
20,79
64,96
58,2
0,912
59,11
20,79
37,41
37,41
17,15
123,16
3,50
0,5
10,5
96,25
19,66
76,59
50,0
1,52
51,52
19,66
30,34
30,34
19,25
126,59
4,00
0,5
10,5
106,75
18,27
88,48
44,3
1,824
46,12
18,27
26,03
26,03
21,35
132,78
4,50
0,5
10,5
117,25
17,64
99,61
37,4
3,04
40,44
17,64
19,76
19,76
23,45
137,01
5,00
0,5
10,5
127,75
16,57
111,18
36,0
3,04
39,04
16,57
19,43
19,43
25,55
147,18
5,50
0,5
10,5
138,25
15,62
122,63
33,2
3,04
36,24
15,62
17,58
17,58
27,65
155,83
5,90
0,4
21,0
8,4
146,65
15,06
131,59
30,5
4,56
35,06
15,06
15,44
15,44
29,33
162,09
6,40
0,5
10
156,65
14,05
142,6
27,7
5,776
33,48
14,05
13,65
13,65
31,33
170,3
6,90
0,5
20,0
10
166,65
13,04
153,61
24,9
7,296
32,20
13,04
11,86
11,86
33,33
178,51
10
5.5. Obliczenia osiadania ławy A
5.5.1. Osiadania pod środkiem ławy A
rodzaj
gruntu
z
zs
σ
zd
σ
i
h
i
i
zs
σ
M
i
"
i
s
i
zd
σ
M
0i
'
i
s
-
m
kPa
-
cm
kPa
cm
kPa
cm
1
2
3
4
5
6
7
8
9
10
11
12
0,0
31,5
245,5
0,0000
0,5 30,81
168,59
1
50
31,155
0,0092
207,045
0,0609
1,0 30,05
111,25
2
50
30,43
0,0090
139,92
0,0412
1,5 25,64
74,06
3
50
27,845
0,0082
92,655
0,0273
2,0 24,00
59,1
4
50
24,82
0,0073
66,58
0,0196
Po
2,5 22,05
47,25
5
50
23,025
170000
0,0068
53,175
170000
0,0156
3,0 20,79
37,41
6
50
21,42
0,0185
42,33
0,0407
3,5 19,66
30,34
7
50
20,225
0,0175
33,875
0,0326
4,0 18,27
26,03
8
50
18,965
0,0164
28,185
0,0271
4,5 17,64
19,76
9
50
17,955
0,0155
22,895
0,0220
5,0 16,57
19,43
10
50
17,105
0,0148
19,595
0,0188
5,5 15,62
17,58
11
50
16,095
0,0139
18,505
0,0178
saclSi
5,9 15,06
15,44
12
40
15,34
57800
0,0106
16,51
52000
0,0127
6,4 14,05
13,65
13
50
14,555
0,0187
14,545
0,0208
saCl
6,9 13,04
11,86
14
50
13,545
38900
0,0174
12,755
35000
0,0182
S 0,1838
S
0,3752
Całkowite osiadanie ławy:
.
5
559
,
0
3752
,
0
1838
,
0
0
cm
cm
S
<
=
+
=
oi
i
zd
i
i
i
zs
M
h
s
M
h
s
i
i
⋅
=
⋅
=
σ
σ
'
"
11
Rozmieszczenie zbrojenia
12
Wykresy naprężeń pionowych w podłożu pod środkiem ławy A