background image

 

Open Life Sci. 2015; 10: 19–29

1  Introduction

Genetic diversity of a species is defined as the sum of genetic 

variability within a gene pool. Therefore, characterization 

of natural species must include intra- and inter-

population genetic variability and the characteristics of 

dynamic relations, such as gene flow, balancing selection 

or mate limitation [1]. SSRs (simple sequence repeats or 

microsatellites) have been widely used in plant genetic 

research due to their high reproducibility, polymorphism, 

co-dominant character and abundance in plant genomes 

[2–5]. SSR markers  have been isolated from European 

pear [6–8] as well as from Asian pear species [9,10]. 

Additionally, a large number of SSRs isolated from apple 

have revealed transferability to pear [11,12]. These markers 

have been used for Pyrus genome mapping [7,12–15], as 

well as for genetic resource characterization [16–21].

The pear (Pyrus spp.) genus is variously said to 

consist of from 20 to over 70 wild or domesticated species 

[22–25]. It is relatively difficult to give an accurate number 

of pear species, because they easily cross-pollinate and 

the obtained crosses have ambiguous taxonomic status. 

The existence of a very large number of cultivars, species, 

subspecies, hybrids and clones reinforces the need for 

genetic characterization and verification. Wild pear (Pyrus 

pyraster = P. commusis ssp. pyraster L.) is a woody plant 

and closely related to the European pear (P. communis). 

This species comes from the western Black Sea region and 

the distribution of the species extends from the British 

Isles to Latvia [26–29]. The wild pear is the only species of 

pears that grows naturally in the region of Central Europe. 

However, its taxonomic definitions appear inadequate 

and conflicting because of the extensive morphological 

heterogeneity of individual plants identified as P. pyraster 

[27,28]. 

In Poland wild pear trees are widespread components 

of human-made and natural habitats: mid-field shrub 

communities, rural landscapes and forest ecosystems [30]. 

Wild pear shows high morphological heterogeneity, which 

may have resulted from many centuries of growing in 

proximity to pear orchards that prompted various stages of 

Abstract: In order to provide molecular characteristics 

of wild pear (P. pyraster) resources, six populations 

(192 accessions) from different regions of Poland were 

investigated with 17 SSR loci. Each of the SSR loci used 

was polymorphic, with a mean of 19.5 alleles per locus 

and a mean PIC of 0.806. Both the high heterozygosity (Ho 

= 0.751) and low Fis (0.007) indicated that the wild pear 

populations maintain a relatively high level of diversity, 

while the mean F

index

 of 0.039 and the number of migrants 

per generation (Nm = 6.996) revealed a high gene flow and 

weak inter-population differentiation. AMOVA analysis 

located polymorphisms mainly within populations (96%). 

Genetic relations between populations did not show 

correlations with geographical distances. The dispersal 

influence of gene flow could be the reason of the disrupted 

relationship within populations and the low inter-

population differentiation. We did not find any evidence 

to support the hypothesis about influence of interspecies 

hybridization with pear cultivars on the level of wild pear 

population diversity.

Keywords: microsatellite, SSR, Pyrus pyraster, wild pear, 

genetic diversity, population structure

DOI 10.1515/biol-2015-0003
Received November 12, 2013; accepted May 11, 2014

Research Article

Open Access

 

© 2015 Łukasz Wolko, et al., licensee De Gruyter Open. 

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Łukasz Wolko*, Jan Bocianowski, Wojciech Antkowiak, Ryszard Słomski

Genetic diversity and population structure of wild 

pear (Pyrus pyraster (L.) Burgsd.) in Poland

*Corresponding author: Łukasz Wolko: Department of Biochemistry 

and Biotechnology, Poznan University of Life Sciences, 60-637 

Poznan, Poland, E-mail: wolko@o2.pl

Ryszard Słomski: Department of Biochemistry and Biotechnology, 

Poznan University of Life Sciences, 60-637 Poznan, Poland

Jan Bocianowski: Department of Mathematical and Statistical 

Methods, Poznan University of Life Sciences, 60-637 Poznan, Poland

Wojciech Antkowiak: Department of Botany, Poznan University of 

Life Sciences, 60-625 Poznan, Poland

Ryszard Słomski: Institute of Human Genetics, Polish Academy of 

Sciences, 60-493 Poznań, Poland

Unauthenticated

Download Date | 6/2/17 11:42 AM

background image

20

 Ł. Wolko et al.

hybridization between native P. pyraster and P. communis 

[31–34]. These hypothetical hybrids presenting various 

traits typical of P. pyraster in combination with traits typical 

of P. communis are classified as Pyrus ×amphigenea Domin 

ex Dostálek [31]. Alternatively, the high morphological 

heterogeneity of wild pear may be the effect of balancing 

selection caused by a self-incompatibility mechanism. 

Studies of polymorphism within the S-locus (genes that 

limit compatibility of mating partners) have revealed high 

variability even in small P. pyraster populations [35–38]. 

Developing genetic characterization of natural wild 

pear populations should make a contribution to the 

debate on potential effects on wild pear introgressive 

hybridization and provide information concerning the 

ecological condition of P. pyraster. Genetic characterization 

of natural wild pear resources could be helpful in an 

effective conservation effort of the species, which could 

be applicable to exchange traits with cultivated varieties 

in breeding programs. Therefore the aims of this study 

were to assess the microsatellite loci polymorphism in the 

P. pyraster species and to estimate the genetic variation on 

the inter- and intra-population levels. 

2  Experimental Procedures

2.1  Plant material sampling and DNA 

extraction 

Wild pear (P. pyraster) from six populations in northern 

and central Poland were used in this study: the Bielinek 

Reserve (BL), Biedrusko (BD), Brodnica (BR), Głuchów 

(GL), Piotrków Trybunalski (PT) and Wyszków (WS) 

(Table 1 and Figure 1). We limited number of samples 

depending on population size. For small populations 

samples were collected from all trees and from larger 

populations around 30 samples were collected at random 

from different locations of the populations. Overall, 192 

trees were tested. The populations were not situated in 

the immediate vicinity of horticultural centres; however 

we could not exclude possibility of gen flow from pears 

growing in rural gardens.

The young leaves collected were immediately placed 

in plastic bags containing moist filter paper. Genomic 

DNA was extracted from 2 g of fresh leaf material following 

a modified cetyltrimethylammonium bromide (CTAB) 

protocol [39]. 

2.2  PCR amplification and electrophoresis

A total of 17 SSR primer pairs were obtained from 

Fernandez-Fernandez et al. [8] and Yamamoto et al. [6,10] 

(Table 2). Microsatellite amplification was conducted 

using 2 x PCR Master Mix (Fermentas Life Sciences, 

Canada) [Components: Taq DNA polymerase 0.5 units/µl, 

MgCl

2

 4 mM and dNTP 0.4 mM]. 50 ng of genomic DNA 

was mixed with 10 ng of each primer (the forward primer 

labeled with a fluorescent chemical FAM, TET or HEX), 

1 x PCR Master Mix and distilled water to make up the 

final volume of 20 µl. Amplification was performed with 

35 cycles at 94°C for 1  min, 42–55°C for 1 min and 72°C 

for 2 minutes, for denaturation, annealing and primer 

extension, respectively. The PCR products were separated 

and detected using a MegaBACE 1000 (GE Healthcare 

Table 1: Characteristics of six wild pear populations. 

 Abbr – Abbreviation; Cs – approximate census size; Ss – sample size; Gp – geographical parameters. 

Abbr

Cs/Ss

Gp

Population characteristics

BL

150/36

14°08’ E

52°56’ N

Large natural population of moderate density; it originated from natural colonization by wild pear 

trees of xerothermic grasslands, the driest and sunniest slopes of the Bielinek reserve.

BD

1500/30

16°55’ E

52°33’ N

The largest population of P. pyraster in Poland located in the Biedrusko army training ground, esta-

blished in the early 20th century and it has been in use by the Polish military since then. The wild 

pear population has probably grown there since the end of agricultural usage; the large population 

consists of dispersed trees and small groups of trees growing close together.

BR

29/29

19°23’ E

53°19’ N

Medium-sized population; trees growing near dirt roads within several meters of each other.

GL

50/30

20°04’ E

51°46’ N 

Medium-sized population; trees scattered along agricultural fields, growing several hundred meters 

from each other.

PT

50/32

19°39’ E

51°27’ N

Medium-sized population; trees scattered along agricultural fields, growing several hundred meters 

from each other.

WS

50/35

21°27’ E

52°35’ N

Medium-sized population; trees scattered along agricultural fields, growing a at a distance of 100 

-  200 m from each other.

Unauthenticated

Download Date | 6/2/17 11:42 AM

background image

 

Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland 

21

Life Sciences, USA) sequencer. The size of the amplified 

bands was determined based on internal standard DNA 

(MegaBACE ET550-R Size Standard) with the MegaBACE 

Fragment Profiler Version 1.2 (GE Healthcare).

2.3  Data analysis

We estimated the genetic information for 17 SSR loci in 

six  P. pyraster populations: the number of individual 

alleles (N), frequency of the most prevalent allele (p), 

number of private alleles unique to a single population 

(Np), inbreeding coefficient for an individual relative to 

the subpopulation (Fis), fixation index (F

index

) and the 

number of migrants per generation (Nm). [40,41]. The 

fixation index is a measure of population differentiation 

due to genetic structure. It is frequently estimated from 

genetic polymorphism data. Developed as a special case 

of Wright’s F-statistics, it is one of the most commonly 

used statistics in population genetics. This comparison 

of genetic variability within and between populations is 

frequently used in applied population genetics. The values 

range from 0 to 1. A zero value implies complete panmixis; 

that is, that the two populations are interbreeding 

freely. A value of one implies that all genetic variation is 

explained by the population structure, and that the two 

populations do not share any genetic diversity. Variability 

for each locus was measured using the polymorphism 

information content (PIC) [42] 

,

1

2

=

n

i

i

p

PIC

where pi is the frequency of the ith allele (Table 3).

The following analyses were performed using the 

GenAlEx version 6.41: the number of different alleles across 

20 SSR loci in populations (Na), the number of private 

alleles unique to a single population (Np), the percentage 

of private alleles (Np%), Shannon’s information index (I), 

observed heterozygosity (Ho), expected heterozygosity 

(He), and inbreeding coefficient (Fis) [43]. Shannon’s 

information index is an index of biodiversity. Tests for 

Figure 1: Distribution of the six studied populations across Poland (for population abbreviation see 2.1).

Unauthenticated

Download Date | 6/2/17 11:42 AM

background image

22

 Ł. Wolko et al.

deviations from the Hardy-Weinberg equilibrium (HWE) 

according to Falconer and Mackay [44] and possible 

deviations of genotype frequencies from their expected 

values were analyzed using the chi-square test (c

2

).

The analysis of molecular variance (AMOVA) was 

used to compute the distribution of genetic variability 

among and within populations. The GenAlEx version 6.41 

allows for the calculation of AMOVA. Significance levels 

for estimated variance components were computed using 

1000 permutations [45]. The data for microsatellite allele 

frequency were applied to calculate the unbiased genetic 

distance and genetic identity estimates by employing 

Nei’s genetic distance [46]. Pairwise, genetic distances 

between individuals as well as between populations were 

Table 2: Characteristics of 17 microsatellite primer pairs including SSR repeat motif. 1-9 Fernandez-Fernandez et al. 2006 [8]; 11- Yamamoto 

et al. 2002 ; 12-17 Yamamoto et al. 2002 [10].

 

No.

Marker

Repeat motif

Primer sequences (5′−3′)

Size range (bp) Most prevalent allele (bp)

1.

EMPc10

AC

F: TTAAGCAAGTGGGCAAGTAGG

R: TTCCGTATCGCTTGTGTCTAC

150-196

160

2.

EMPc102

CT

F: CGATGATCCATCATTAAGTCCC

R: TCAAGTTCTGCTTCATTTCCAG

142-193

178

3.

EMPc105

AG

F: TCAAGATGGACCAAAAAGGTTC

R: AGAGGTGCAAAGATATTCCAGG

122-198

180

4.

EMPc106

AG

F: CGATTCAAATCAGCCTATTCTGT

R: CACTTATCGACATCTGTCAGCC

104-224

204

5.

EMPc110

CT

F: ACTAACATTAAAAAATCTTTAC

R: ATCTTAAAACTTAAACTAAATAA

96-150

160

6.

EMPc111

AG

F: CAAACCTTCCAACCTCAACAAT

R: CCGATCAGAAAGAGCTGTGAGT

82-122

100

7.

EMPc114

AG

F: ACCCACAATTCCCCATAT

R: AGCCTTATGCGCCTTCTA

132-186

139

8.

EMPc115

GT

F: AGAAGCGAGGAAGCAGTGTAT

R: CATGTAGACCAGTTTCATTTGC

161-196

183

9.

EMPc117

CT

F: GTTCTATCTACCAAGCCACGCT

R: CGTTTGTGTGTTTTACGTGTTG

92-138

103

10.

KA14

(CA)G(AC)G(CA) F: TCATTGTAGCATTTTTATTTTT

R: ATGGCAAGGGAGATTATTAG

171-199

187

11.

BGT23b

TC

F: CACATTCAAAGATTAAGAT

R: ACTCAGCCTTTTTTTCCCAC

164-239

210

12.

NB109a

AG

F: ATGCTCTATAAAACCCACCTACC

R: AGAGGGACCATTGTGTTATTGTAT

135-194

160

13.

NB113a

AG

F: ATGAAATATGTCGTGTTGCCCTTAG

R: CCCTTCCTCAGCATGTTTCCTAGAC

135-167

155

14.

NH025a

AG

F: CTGGACACAAACATTCAAGAGGG

R: CACACCAGAAACTCCAAAACAGG

50-106

70

15.

NH026a

AG

F: CGTAATACTCGTAGTGCATGATG

R:GCTTCTGGACTATCACTATTTCTTC

123-158

139

16.

NH027a

AG

F: TAATGTGTTGGGGAGAGAGAG

R: GCTCTTGTTCCTTGCTCCTAA

112-172

131

17.

NB141b

AG

F: TTCCTCCACTTGAGGGACAC

R: GTTGAAGGCATCGGATTGAT

82-121

93

Unauthenticated

Download Date | 6/2/17 11:42 AM

background image

 

Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland 

23

estimated using the proportion of shared allele approach 

[47]. On the basis of calculated coefficients, individuals 

as well as populations were grouped hierarchically, using 

the unweighted pair group method of arithmetic means 

(UPGMA). The relationships between individuals as well 

as among populations were presented in the form of 

dendrograms (Figures 2 and 3). Genetic differentiation 

between pairs of populations across all loci was analyzed 

based on estimates of t

st

 values and N

m

.

The longitude and latitude coordinates were used 

to construct the geographical distance matrix between 

the studied populations. A Mantel test was computed 

between genetic and geographical distances. In addition, 

we used the Bayesian clustering method to elucidate the 

genetic structure among populations of wild pear, and 

to infer the most appropriate number of subpopulations 

(K). Simulations were run 10 times with 200000 Markov 

chain Monte Carlo sampling runs after a burn-in period 

of 1000000 iterations, using the admixture model under 

the assumption of correlated allele frequencies. The most 

appropriate cluster number (K) was selected using the 

criterion of [48].

3  Results

3.1  Characteristic of SSR markers and 

genetic diversity

The transferability of SSR markers from P. communis 

to  P. pyraster has previously been tested [18]. Based on 

these results, we selected the 17 SSR markers for the wild 

pear natural population diversity analysis due to high 

polymorphism (Table 2). Each of the 17 loci analysed 

was polymorphic and a total of 332 putative alleles were 

obtained, which gave a mean value of 19.5 alleles per locus. 

Of the 17 microsatellite loci, only one (EMPc105) deviated 

from the Hardy-Weinberg equilibrium (P = 0.023), due to 

heterozygote deficiency. 

The highest number of the alleles per locus were 

obtained for EMPc106 (N = 35) and the lowest were for 

NB113a (N = 11) (Table 3). The discrimination power of SSR 

markers was described by: the polymorphism information 

content (PIC), Shannon’s information index (I) and the 

frequency of the most prevalent allele (p) (Table 3). 

The highest discrimination power (PIC > 0.9, I > 2.3 and 

Table 3: Genetic information for 17 SSR loci in six P. pyraster populations: N – number of alleles; Np – number of private alleles unique to a 

single population; p – frequency of the most prevalent allele; I – Shannon’s information index; Fis – inbreeding coefficient for an individual 

relative to the subpopulation; F

index

– Fixation index, Nm - number of migrants per generation; PIC – polymorphism information content.

 

Locus

N

Np

p

I

Fis

F

index

Nm

PIC

EMPc10

12

3

0.456

1.407

-0.108

0.038

6.341

0.695

EMPc102

21

5

0.391

2.000

 0.022

0.040

6.018

0.811

EMPc105

24

7

0.177

2.386

 0.266

0.046

5.194

0.916

EMPc106

35

10

0.297

2.303

 0.001

0.042

5.721

0.876

EMPc110

18

3

0.719

1.114

 0.059

0.031

7.715

0.474

EMPc111

15

2

0.357

1.738

-0.163

0.078

2.961

0.791

EMPc114

21

1

0.234

2.256

 0.148

0.038

6.404

0.887

EMPc115

14

1

0.604

1.624

-0.014

0.017

14.055

0.730

EMPc117

21

3

0.151

2.362

 0.075

0.039

6.178

0.911

KA14

12

2

0.495

1.458

-0.151

0.026

9.272

0.700

BGT23b

23

9

0.341

2.026

 0.111

0.036

6.675

0.830

NB109a

28

5

0.229

2.427

-0.021

0.030

8.026

0.902

NB113a

11

4

0.492

1.452

-0.190

0.029

8.322

0.698

NH025a

21

3

0.169

2.368

 0.027

0.048

4.926

0.918

NH026

15

0

0.279

2.224

-0.006

0.033

7.277

0.882

NH027a

25

4

0.179

2.329

 0.216

0.036

6.661

0.907

NB141b

16

5

0.383

1.750

 0.038

0.051

4.612

0.788

Mean

19.5

3.9

0.350

1.954

0.018

0.039

6.845

0.806

Unauthenticated

Download Date | 6/2/17 11:42 AM

background image

24

 Ł. Wolko et al.

Figure 2: Dendrogram of relationships among 192 wild pear trees based on UPGMA method according the data of SSR analysis

Figure 3: Dendrogram of genetic differentiation between six wild pear populations. The dendrogram based on Nei’s unbiased genetic dis-

tance using the UPGMA method, according to data from all SSR loci.

Unauthenticated

Download Date | 6/2/17 11:42 AM

background image

 

Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland 

25

p < 0.2) was estimated in the case of four loci: EMPc 105, 

EMPc117, NH025a and NH027a. The lowest discrimination 

power parameters were obtained for EMPc110 (PIC = 0.47, 

I = 1.1, p = 0.72). The Fis mean value calculated for all SSR 

loci was 0.018. Fis was highest for EMPc105 (Fis = 0.266) 

and the lowest for NB113a (Fis = -0.19) (Table 3).

Private alleles unique to a single wild pear population 

(Np) measure the genetic distinctiveness of the marker 

for the tested populations and are useful for estimating 

migration rates. The genetic diversity of the markers 

does not demonstrate any correlation with the Np value.  

The highest number of such alleles (10) was found for 

the EMPc106, while no unique allele was detected for the 

NH026 (Table 3).  

3.2  Population variation

A mean of 11.75 alleles per population per locus were 

detected. The BR with the highest number of alleles across 

loci (mean Na = 12.52) and the BD with the highest number 

of private alleles (Np = 17) seem to offer the most diversified 

populations. The lowest number of alleles was observed 

for the BL population (Na = 10.76) and the lowest number 

of private alleles was recorded in BR (Np = 8) (Table 4).

The low mean value of fixation index (F

index

 = 0.039) 

indicated negligible population genetic differentiation 

and low genetic divergence within the populations. 

 

The number of migrants per generation (Nm) for loci 

ranged between 2.961 and 14.274 with an average value of 

6.845 (Table 3). 

The high level of intra-population genetic diversity 

was supported by the results for the Shannon information 

index (mean value I = 1.954), as well as high observed and 

expected heterozygosity (mean Ho = 0.751 and He = 0.762) 

(Table 4). The population-wise inbreeding coefficient 

(Fis) values were around zero (from -0.035 to 0.041) with 

an average value of 0.018. This result suggested random 

mating, no population subdivisions and a state close to 

the Hardy-Weinberg equilibrium (Table 4). 

Significant differentiation (F = 3.451; P  <  0.001) 

among the six populations was further supported by the 

results from analysis of molecular variance (AMOVA) 

using microsatellites, where both the intra- and the inter- 

population variability were found to be highly significant, 

with 4.0% of the genetic variance attributed to the 

differentiation among the six populations, whereas 96.0% 

was the result of intra- population variability (Table 5).

The analysis of genetic differentiation between pairs 

of populations confirms that differentiation was modest 

(Table 6). The value of population differentiation (t

st

) was 

the highest between PT and BD (0.033) and the lowest 

between the BD and BR (0.016). The gene flow (N

m

) was the 

highest between PT and WS (15.491) and lowest between 

PT and BD (7.425) (Table 6).

Table 5: Summary of analysis of molecular variance (AMOVA) of microsatellite loci for comparison among and within all six populations. df 

– degree of freedom (ratio statistic Rst = 0.037, P ≤ 0.01). Probability of obtaining a large component estimate; number of permutations = 

1000. 

Source of variation

Df

Sum of squares

Mean squares

Estimated variance

Percentage of variation

Among Pops

5

43456.618

8691.324

    96.577

  4

Within Pops

378

952118.048

2518.831

2518.831

 96

Total

383

995574.667

2615.408

100

Table 4: Genetic diversity of wild pear populations. N – total number of alleles; Na – average number of different alleles per locus; Np – 

number of private alleles unique to single population; Ne – number of effective alleles; I – Shannon’s information index; Ho – observed 

heterozygosity; He – expected heterozygosity; Fis – inbreeding coefficient. 

Population

N

Na

Np

Ne

   I

 Ho

 He

  Fis

BL

183

10.76

  9

5.247

1.780

0.724

0.731

 0.008

BD

207

12.17

17

6.245

1.984

0.763

0.781

 0.013

BR

213

12.52

  8

6.634

1.997

0.745

0.781

 0.035

GL

196

11.53

11

5.194

1.891

0.735

0.771

 0.041

PT

204

12.00

15

5.235

1.860

0.764

0.750

-0.029

WS

195

11.47

11

5.377

1.865

0.774

0.757

-0.035

Mean

199.7

11.75

11.8

5.655

1.954

0.751

0.762

 0.018

Unauthenticated

Download Date | 6/2/17 11:42 AM

background image

26

 Ł. Wolko et al.

3.3  Genetic distances among individuals 

and populations

UPGMA cluster analyses were conducted for single trees as 

well as the six populations. The phylogenetic tree of single 

individuals (Figure 2) shows a weak correlation between 

the source population and genetic relationships inferred 

from polymorphism of SSR loci. The pear trees could 

be classified into six main groups, but all of the groups 

consist of individuals from at least two populations. The 

phylogenetic analysis of relationships between individual 

trees may confirm the potential gene flow. 

Nei’s unbiased genetic distance and identity were 

estimated for each pair of populations (supplementary 

materials). The distances ranged between 0.11 (PT – WS) 

and 0.249 (PT – BD), while identity varied between 0.779 

(BD – GL and PT – BD) and 0.896 (PT – WS). To elucidate 

the relationships between populations, a dendrogram 

was constructed on the basis of genetic distances 

(Figure 3). Estimation of correlation coefficients between 

genetic and geographical distances did not show any 

correlation of these parameters (r = 0.0241, P = 0.9320). 

Bayesian clustering analysis indicated the same grouping 

as UPGMA cluster analyses.

4  Discussion

4.1  Characteristics and diversity of SSR 

markers

The SSR markers used in the study demonstrated a high 

degree of polymorphism. In total, the 17 SSR markers 

allowed identification of 332 alleles in the 192 examined 

P. pyraster genotypes. The resultant mean of 19.5 alleles 

per locus (Table 3) was higher than the 14.8 reported 

previously for wild pear by Kimura et al. [9], 17.3 by Volk 

et al. [16] and 13 by Yakovin et al. [19]. The differences may 

be a result of the loci examined and the large number of 

individuals for geographically remote populations.

The length of the fragments obtained for the SSR loci 

was described previously for P. communis [8,17,19,37]; 

however, allele lengths obtained for P. communis and 

P. pyraster were often different [8,17] (Table 2). The most 

often observed alleles were mostly (10 markers) of the 

same length as previously described for P. communis [18].

4.2  Population variation 

A heterozygosity level was recorded in the examined 

populations proving their high genetic variation (mean 

Ho=0.75). Similar ranges of Ho and He values have been 

described for P. communis [8,17–19]. The differences in values 

of Ho and He did not exceed 0.04 per population and were 

generally not different in a statistically significant manner 

(Table 4). Similar values of He and Ho, as well as a very low 

mean inbreeding coefficient (Fis = 0.018) indicated that 

the examined populations were near the Hardy-Weinberg 

equilibrium state (Tables 3 and 4). This could be the effect 

of a gametophytic self-incompatibility mechanism, which 

prevents inbreeding in pear species [35–38].

Populations BD and BR seemed to be genetically 

diversified to the highest degree because of the highest 

values of alleles per locus (Na), effective alleles (Ne) 

and Shannon’s information index (I) (Table 5). However, 

the BR population had the lowest number of private 

alleles (Np = 8) and the highest inbreeding coefficient  

(Fis = 0.035), which could be the result of the small 

size of this population. The population of BL showed 

the weakest separation and genetic differentiation. 

 

It is interesting that only this population was reported in 

the wildlife reserve and this protection excluded human 

interference, so this should have accelerated the natural 

process of plant succession [30]. Two of the six studied 

populations, BL and BD, could be described as natural 

populations, whereas the BR, GL, PT and WS populations 

Table 6: Analysis of genetic differentiation between pairs of populations across all loci based on estimates of t

st

 values (below diagonal) and 

N

m

 (above diagonal). t

st

 and N

m

 values were negatively significantly correlated (r = -0.9641, p < 0.00001). 

Populations

BL

BD

BR

GL

PT

WS

BL

***

9.852

9.997

7.894

10.055

11.573

BD

0.025

***

14.938

10.098

7.425

9.169

BR

0.024

0.016

***

10.622

8.166

10.490

GL

0.031

0.024

0.023

***

9.090

10.172

PT

0.024

0.033

0.030

0.027

***

15.491

WS

0.021

0.027

0.023

0.024

0.016

***

Unauthenticated

Download Date | 6/2/17 11:42 AM

background image

 

Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland 

27

had anthropogenic sources. We conclude that our study 

did not show significant differences in the level of 

genetic variation between natural and human-created 

populations.

Analysis of genetic distances and differentiation proved 

that the highest genetic similarity was observed between two 

pairs of populations: the PT – WS and BD – BR populations 

(Tables 6). However, the genetic relations illustrated on 

the dendrogram (Figure 3) did not show correlations with 

geographical distances between populations (Figure 1). 

The weak correlation between genetic and geographical 

distances is difficult to explain. We could suspect an 

accidental human impact during the process of plantation 

of wild pear trees along  mid-field and rural roads, but the 

strength of this impact seems to be difficult to assess.

4.3  Population gene flow

Our study demonstrates that the high level of gene flow 

appeared to be one of the most important elements 

determining the genetic structure of wild pear populations. 

Gene flow causes restriction of divergence between 

populations, whereas genetic drift and directional selection 

induce intra-population diversity [49,50]. In the case of 

trees, gene flow is the result of pollen and seed spreading. 

Long lifetime of trees may cause formation of multi-

generation populations when the gene flow and panmix 

change the family structure and reduce inbreeding [49]. 

In the presented study the mean value of Fis was 

below 0.05, which proved no population subdivision 

and a lack of barriers in mutual pollination, while the 

high level of gene flow and genetic homogeneity across 

the examined populations were supported by F

index 

and

 

Nm values (Table  3). The results of AMOVA localized 

majority variation on the intra-population level (Table 5) 

and the analysis of genetic differentiation between pairs 

of populations also demonstrated a low inter-population 

differentiation and high gene flow (Table 6).  

The results allow us to conclude that the wild pear 

species in Poland maintains a relatively high level of 

genetic diversity. The high heterogeneity of the examined 

populations may be the effect of pollination by insects or 

seed spreading by animals [51–54], but the influence of 

human activities could be suspected as well. The process 

of genetic pool mixing via gene flow may have resulted 

in relatively low relationships among the individuals 

in multi-generation habitats, which is illustrated on the 

dendrogram of individual accession (Figure 2). However, 

further studies of the spatial population genetic structure 

need to be conducted in order to characterize these 

phenomena in detail. 

Regular crossbreeding with cultivated pear varieties 

could have led to inter-species hybridization and a decline 

in natural characters of P. pytaster [31–34]. Meanwhile, 

gametophytic type self-incompatibility, regulating 

pollination in Pyrus should induce pressure on genetic 

variability maintenance [16,18,34,37]. The strong influence 

of gene flow from cultivations to the natural wild pear 

populations should lead to genetic unification of the wild 

population. Meanwhile, in a large study, populations 

were detected with genetic diversity and gene flow, which 

may give evidence against the influence of interspecific 

hybridization

Acknowledgements:  This study was funded from 

resources allocated to research from 2009 to 2013, as 

research project No. N N304 141337

References

[1]  Toro M., Caballero A., Characterization and conservation of 

genetic diversity in subdivided populations, Philos. Trans. R. 

Soc. B Biol. Sci., 2005, 360, 1367–1378

[2]  Ellis J.R., Burke J.M., EST-SSRs as a resource for population 

genetic analyses, Heredity, 2007, 99, 125–132

[3]  Lazrek F., Roussel V., Ronfort J., Cardinet G., Chardon F., 

Aouani M.E., et al., 2009. The use of neutral and non-neutral 

SSRs to analyse the genetic structure of a Tunisian collection 

of Medicago truncatula lines and to reveal associations with 

eco-environmental variables, Genetica, 2009, 135, 391–402

[4]  Tian-Ming H., Xue-Sen C., Zheng X., Jiang-Sheng G., Pei-Jun 

L., Wen L., et al., 2007. Using SSR markers to determine the 

population genetic structure of wild apricot (Prunus armeniaca 

L.) in the Ily Valley of West China, Genet. Resour. Crop Evol., 

2007, 54, 563–572

[5]  Xie W.G., Lu X.F., Zhang X.Q., Huang L.K., Cheng L., Genetic 

variation and comparison of orchardgrass (Dactylis glomerata 

L.) cultivars and wild accessions as revealed by SSR markers, 

Genet. Mol. Res. GMR, 2012, 11, 425–433

[6]  Yamamoto T., Kimura T., Sawamura Y., Manabe T., Kotobuki K., 

Hayashi T., et al., Simple sequence repeats for genetic analysis 

in pear, Euphytica, 2002, 124, 129–137

[7]  Yamamoto T., Kimura T., Shoda M., Imai T., Saito T., Sawamura 

Y., et al.,  Genetic linkage maps constructed by using an 

interspecific cross between Japanese and European pears, 

Theor. Appl. Genet., 2002, 106, 9–18

[8]  Fernández-Fernández F., Harvey N.G., James C.M., Isolation and 

characterization of polymorphic microsatellite markers from 

European pear (Pyrus communis L.), Mol. Ecol. Notes, 2006, 6, 

1039–1041

[9]  Kimura T., Shi Y.Z., Shoda M, Kotobuki K, Matsuta N, Hayashi 

T., et al., Identification of Asian Pear Varieties by SSR Analysis, 

Breed. Sci., 2002, 52, 115–121

[10]  Yamamoto T., Kimura T., Shoda M., Ban Y., Hayashi T., Matsuta 

N., Development of microsatellite markers in the Japanese pear 

(Pyrus pyrifolia Nakai). Mol. Ecol. Notes, 2002, 2, 14–16

Unauthenticated

Download Date | 6/2/17 11:42 AM

background image

28

 Ł. Wolko et al.

[11]  Yamamoto T., Kimura T., Sawamura Y., Kotobuki K., Ban 

Y., Hayashi T., et al. SSRs isolated from apple can identify 

polymorphism and genetic diversity in pear, Theor. Appl. 

Genet., 2001, 102, 865–870

[12]  Pierantoni L., Cho K-H., Shin I-S., Chiodini R., Tartarini S., 

Dondini L., et al., Characterisation and transferability of apple 

SSRs to two European pear F1 populations, Theor. Appl. Genet., 

2004, 109, 1519–1524

[13]  Pierantoni L., Dondini L., Cho K.H., Shin I.S., Gennari F., 

Chiodini R., et al., Pear scab resistance QTLs via a European 

pear (Pyrus communis) linkage map, Tree Genet. Genomes, 

2007, 3, 311–317

[14]  Terakami S., Adachi Y., Iketani H., Sato Y., Sawamura Y., Takada 

N., et al., Genetic mapping of genes for susceptibility to black 

spot disease in Japanese pears, Genome, 2007, 50, 735–741

[15]  Evans K.M., Govan C.L., Fernández-Fernández F., 2008. A 

new gene for resistance to Dysaphis pyri in pear and identi-

fication of flanking microsatellite markers, Genome, 2008, 51, 

1026–1031

[16]  Volk G.M., Richards Ch.M., Henk A.D., Reilley A.A., Diversity of 

Wild Pyrus communis Based on Microsatellite Analyses, J. Am. 

Soc. Hortic. Sci., 2006, 131, 408–417

[17]  Bao L., Chen K., Zhang D., Cao Y., Yamamoto T., Teng Y. Genetic 

diversity and similarity of pear (Pyrus L.) cultivars native to East 

Asia revealed by SSR (simple sequence repeat) markers, Genet. 

Resour. Crop Evol., 2007, 54, 959–971

[18]  Wolko Ł., Antkowiak W., Lenartowicz E., Bocianowski J., Genetic 

diversity of European pear cultivars (Pyrus communis L.) and 

wild pear (Pyrus pyraster (L.) Burgsd.) inferred from microsa-

tellite markers analysis. Genet. Resour. Crop Evol., 2010, 57, 

801–806

[19]  Yakovin N.A., Fesenko I.A., Isachkin A.V., Karlov G.I., 

Polymorphism of microsatellite loci in cultivars and species of 

pear (Pyrus L.), Russ. J. Genet., 2011, 47, 564–570

[20]  Cao Y., Tian L., Gao Y., Liu F., Genetic diversity of cultivated 

and wild Ussurian Pear (Pyrus ussuriensis Maxim.) in China 

evaluated with M13-tailed SSR markers. Genet. Resour. Crop 

Evol., 2012, 59, 9–17

[21]  Sehic J., Garkava-Gustavsson L., Fernández-Fernández F., 

Nybom H., Genetic diversity in a collection of European pear 

(Pyrus communis) cultivars determined with SSR markers 

chosen by ECPGR, Sci. Hortic., 2012, 145, 39–45

[22]  Terpo A., Studies on taxonomy jand grouping of Pyrus species, 

Feddes Repert., 1985, 96, 73–87.

[23]  Oliveira C.M., Mota M., Monte-Corvo L., Goulao L., Silva D.M., 

Molecular typing of Pyrus based on RAPD markers, Sci. Hortic., 

1999, 79, 163–174

[24]  Potter D., Eriksson T., Evans R.C., Oh S., Smedmark J.E.E., et 

al., Phylogeny and classification of Rosaceae, Plant Syst. Evol., 

2007, 266, 5–43

[25]  Zheng, X., Hu, C., Spooner, D., Liu, J., Cao J., Teng Y., Molecular 

evolution of Adh and LEAFY and the phylogenetic utility of their 

introns in Pyrus (Rosaceae), BMC Evol. Biol., 2011, 11, 255

[26]  Paganová V., The evaluation of height growth of wild pear 

(Pyrus pyraster) progenies from different regions of Slovak 

republic, J. For. Sci. - UZPI Czech Repub., 2001, 47, 464–472

 [27] Paganová V., Taxonomic reliability of leaf and fruit morpho-

logical characteristics of the Pyrus L. taxa in Slovakia, Horticul 

Sci Prague, 2003, 30, 98–107

[28]  Paganová V., Wild pear Pyrus pyraster L. Burgsd. requirements 

on environmental conditions, Hortic. Sci., 2003, 22, 225–241

[29]  Paganová V., The occurrence and morphological characteristics 

of the wild pear lower taxa in Slovakia, Hortic. Sci., 2009, 36, 

1–13.

[30]  Antkowiak W., Cedro A., Prajs B., Wolko Ł., Michalak M., 

Success of wild pear Pyrus pyraster (L.) Burgsd. in colonization 

of steep sunny slopes : an interdisciplinary study in the 

Bielinek Reserve (NW Poland), Pol. J. Ecol., 2012, 60, 57–78

[31]  Hoffmann H., Zur Verbreitung und Ökologie der Wildbirne 

(Pyrus communis L.) in Süd-Niedersachsen und Nordhessen 

sowie ihrer Abgrenzung von verwilderten Kulturbirnen (Pyrus 

domestica Med.), Mitt Dtsch. Dendrol Ges, 1993, 81, 71–94

[32]  Wagner I., Zusammenstellung morphologischer Merkmale 

und ihrer Ausprägungen zur Unterscheidung von Wild- und 

Kulturformen des Apfel - (Malus) und des Birnbaumes (Pyrus), 

Mitt Dtsch. Dendrol Ges, 1996, 82, 87–108

[33]  Dostálek I., Pyrus x amphigenea, seine Taxonomie und 

Nomenklatur. Folia Geobot Phytotaxon, 1989, 24, 103–108

[34]  Dolatowski J.N.J., Podyma W., Szymanska M., Zych M., 

Molecular studies on the variability of Polish semi-wild pears 

Pyrus using AFLP, J. Fruit Ornam. Plant Res., 2004, 12, 331–337

[35]  Halász J., Hegedûs A., Pedryc A., Review of the molecular 

background of self-incompatibility in rosaceous fruit trees, J. 

Hortic. Sci., 2006, 12, 7–18

[36]  Holderegger R., Häner R., Csencsics D., Angelone S., Hoebee 

S.E., S-allele diversity suggests no mate limitation in small 

populations of a self-incompatible plant, Evol. Int. J. Org. Evol., 

2008, 62, 2922–2928

[37]  Wolko Ł., Antkowiak W., Sips M., Słomski R., Self-incompa-

tibility alleles in Polish wild pear (Pyrus pyraster (L.) Burgsd.): a 

preliminary analysis, J. Appl. Genet., 2010, 51, 33–35

[38]  Hoebee S.E., Angelone S., Csencsics D., Määttänen K., 

Holderegger R., Diversity of S-Alleles and Mate Availability in 3 

Populations of Self-Incompatible Wild Pear (Pyrus pyraster), J. 

Hered., 2012, 103, 260–267

[39]  Torres A.M., Weeden N.F., Martín A., Linkage among isozyme, 

RFLP and RAPD markers in Vicia faba, Theor. Appl. Genet., 

1993, 85, 937–945

[40]  Nei M., Chesser R.K., Estimation of fixation indices and gene 

diversities. Ann. Hum. Genet., 1983, 47, 253–259

[41]  Weir B.S., Cockerham C.C., Estimating F-Statistics for the 

Analysis of Population Structure, Evolution, 1984, 38, 1358

[42]  Anderson J.A., Churchill G.A., Autrique J.E., Tanksley S.D., 

Sorrells M.E., Optimizing parental selection for genetic linkage 

maps, Genome Natl. Res. Counc. Can., 1993, 36, 181–186

[43]  Peakall R., Smouse P.E., GenAlEx 6: genetic analysis in Excel. 

Population genetic software for teaching and research, Mol. 

Ecol. Notes, 2006, 6, 288–295

[44]  Falconer D.S., Mackay T.F.C., Introduction to quantitative 

genetics, Longman, Essex, England. 1996

[45]  Irzykowska L., Weber Z., Bocianowski J., Comparison of 

Claviceps purpurea populations originated from experimental 

plots or fields of rye, Cent. Eur. J. Biol., 2012, 7, 839–849

[46]  Nei M., Tajima F., Tateno Y., Accuracy of estimated phylogenetic 

trees from molecular data, J. Mol. Evol., 1983, 19, 153–170

[47]  Bowcock A.M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd 

J.R., et al., High resolution of human evolutionary trees with 

polymorphic microsatellites, Nature, 1994, 368, 455–457

Unauthenticated

Download Date | 6/2/17 11:42 AM

background image

 

Genetic diversity and population structure of wild pear (Pyrus pyraster (L.) Burgsd.) in Poland 

29

[53]  Hardesty B.D., Dick C.W., Kremer A., Hubbell S., Bermingham 

E., Spatial genetic structure of Simarouba amara Aubl. 

(Simaroubaceae), a dioecious, animal-dispersed Neotropical 

tree, on Barro Colorado Island, Panama, Heredity, 2005, 95, 

290–297

[54]  López-Bao J.V., González-Varo J.P., Frugivory and Spatial 

Patterns of Seed Deposition by Carnivorous Mammals in 

Anthropogenic Landscapes: A Multi-Scale Approach. PLoS ONE, 

2011, 6, e14569

Supplemental Material: The online version of this article

(DOI: 10.1515/biol-2015-0003) offers supplementary material.

[48]  Evanno G., Regnaut S., Goudet J., Detecting the number of 

clusters of individuals using the software STRUCTURE: a 

simulation study, Mol. Ecol., 2005, 14, 2611–2620

[49]  Lenormand T., Gene flow and the limits to natural selection, 

Trends Ecol. Evol., 2002, 17, 183–189

[50]  Burczyk J., DiFazio S.P., Adams W.T., Gene flow in forest trees: 

how far do genes really travel, For. Genet., 2004, 11, 179–192

[51]  Konuma A., Tsumura Y., Lee C.T., Lee S.L., Okuda T., Estimation 

of gene flow in the tropical-rainforest tree Neobalanocarpus 

heimii (Dipterocarpaceae), inferred from paternity analysis, 

Mol. Ecol., 2000, 9, 1843–1852

[52]  Godoy J.A., Jordano P., Seed dispersal by animals: exact identi-

fication of source trees with endocarp DNA microsatellites, Mol. 

Ecol., 2001, 10, 2275–2283

Unauthenticated

Download Date | 6/2/17 11:42 AM


Document Outline