sodium amide eros rs041

background image

SODIUM AMIDE

1

Sodium Amide

NaNH

2

[7782-92-5]

H

2

NNa

(MW 39.02)

InChI = 1/H2N.Na/h1H2;/q-1;+1
InChIKey = ODZPKZBBUMBTMG-UHFFFAOYAF

(strong base;

3

strong nucleophile

38

)

Alternate Name:

sodamide.

Physical Data:

mp 210

C; bp 400

C/760 mmHg.

Solubility:

sol liq ammonia (∼1 mol L

−1

at −33

C).

1

Form Supplied in:

commercially available as a powder; easily

prepared in the laboratory.

Preparative Methods:

combination of Ammonia, small quan-

tities of an iron(III) salt, and Sodium leads to formation of a
black catalyst, whereupon the remainder of the sodium is added.
Published procedures differ in details.

2

Handling, Storage, and Precautions:

flammable; corrosive; when

opened to air, decomposes and forms a potentially explosive
yellow byproduct.

1

Reaction as a Base. Sodamide often serves as a base to gen-

erate reactive anions.

3

In DMSO in the presence of various bases,

including sodamide, carbohydrates are benzylated in good yield
with Benzyl Chloride.

3a

Reaction of (1) and (2) in the presence

3b

of sodamide gives (3) (eq 1). Sodamide is effective in generat-
ing the acetonitrile anion for reaction with sulfines.

4

Deprotona-

tion of phenylacetic esters in the presence of sodamide allows
aldol reaction with benzaldehyde derivatives to afford 2,3-diaryl-
3-hydroxypropionic acids.

5

Similarly, reaction of acetophenone

and ethyl chloroacetate (eq 2) gives the Darzens’ product (4).

6

Treatment of primary anilines and cyanopyridines with sodamide
leads to good yields of carboxamidines.

7

Oxygenation of hindered

4-alkylphenols in the presence of sodamide provides a convenient
source of quinols.

8

Ph

O

Cl

Cl

Ph

O

Cl

+

(1)

(1)

(2)

(3)

69%

NaNH

2

O

Ph

O

CO

2

Et

Ph

(2)

(4)

NaNH

2

62–64%

ClCH

2

CO

2

Et

Sodamide in THF with boric acid neutralization has proven

effective for the deconjugation of conjugated unsaturated
steroids.

9

The presence of sodamide in liquid ammonia at low

temperature facilitates interconversion of 1,4- and 1,3-cyclo-
hexadienes.

10

Deprotonation of 2-bromothiophenes and 2-

halothianaphthalenes affords the 3-halo isomers via a series of
complex equilibria.

11

Cyclopropenes, which possess an acidity

comparable to alkynes, are rapidly metalated by sodamide (and
other alkali amides) to produce reactive intermediates for alkyl-

ation.

12

Selective deprotonation occurs with a wide variety of

acidic methyl, methylene, and methine hydrogens adjacent to car-
bonyls or attached to heterocycles. For example, 2,4-lutidine (5)
undergoes deprotonation (eq 3) to (6) followed by reaction with
ethyl benzoate to yield (7).

13a

Deprotonation followed by reac-

tion with electrophiles is a powerful method for generating com-
plex carbon skeletons.

13

Examination of the role of bases, includ-

ing sodamide, on the stereochemistry (including isomerization)
of products formed in the Michael reaction has been reported.

14

In the racemization of the single stereogenic center in nicotine,
sodamide was inferior to Potassium tert-Butoxide.

15

N

NaNH

2

N

N

Ph

O

(6)

(3)

(7)

(5)

85%

PhCO

2

Et

Dianion Generation.

Numerous early investigations into

dianion chemistry.

16

employed sodamide as the base. Conversion

of the simple heterocycle (8) into the corresponding dianion with
sodamide in liquid ammonia followed by reaction with benzoni-
trile (eq 4) led to an interesting rearrangement product (9).

17

β

-Dicarbonyl dianions are routinely prepared by reaction with

sodamide. These strongly nucleophilic species undergo regios-
elective alkylation (eq 5) by reaction of disodioacetylacetone
(10) (much more soluble in liquid ammonia than its dipotassium
counterpart

16a

) with 11-bromoundecanoic acid to give (11)

18

and

reaction of (10) (eq 6) with diphenyliodonium chloride to yield
(12).

19

NH

O

O

PhCN

N
H

O

NH

2

O

Ph

(4)

(8)

(9)

NaNH

2

58%

O

O

Br

CO

2

Li

Na

+

Na

+

O

O

CO

2

H

+

(5)

(10)

(11)

( )

11

( )

10

82%

H

+

(6)

O

O

Ph

(10)

+

Ph

2

ICl

H

+

(12)

60–64%

Elimination Reactions. Sodamide’s utility as a reagent for

elimination reactions is illustrated by the following selected ex-
amples. Methiodide (13) undergoes facile loss of HI and diethyl-
methylamine to generate methyl vinyl ketone.

20

Five isomeric

alkenes and a cyclopropane result from treatment of 2-benzyl-3-
phenylpropyltrimethylammonium iodide with sodamide.

21

Upon

reaction with sodamide, various thioamides eliminate hydrogen
sulfide to form ynamines in fair yield.

22

In the presence of

sodamide, cis-1,4-dichloro-2-butene (14) yields mainly trans-

Avoid Skin Contact with All Reagents

background image

2

SODIUM AMIDE

1-chloro-1,3-butadiene (15) (eq 7) while trans-1,4-dichloro-2-
butene gives a preponderence of cis-1-chloro-1,3-butadiene (16)
(eq 8).

23

Upon warming a mixture of methallyl chloride (17) and

sodamide (eq 9), there is formed methylenecyclopropane (18) and
1-methylcyclopropene (19)

24

Sodamide, Sodium Hydride, and

Sodium Methoxide all have utility in the Bamford–Stevens reac-
tion for the conversion of tosylhydrazones into alkenes.

25

(13)

O

N

Me

Et

Et

+

I

(7)

Cl

Cl

Cl

(14)

(15)

52%

NaNH

2

(8)

(16)

Cl

Cl

Cl

72%

NaNH

2

(9)

(19)

Cl

+

(18)

(17)

72%

NaNH

2

Preparation of Alkynes. Sodamide-mediated elimination of

one or two moles of HX from a suitable substrate is a classical
method for the synthesis of alkynes. For example, β-bromostyrene
with sodamide in liquid ammonia provides an excellent source of
phenylacetylene.

26

Cyclohexylpropyne (21) can be generated by

reaction (eq 10) of vinyl bromide (20) with 3 equiv (excess) of
sodamide.

27

Oleic acid (22) can be transformed into stearolic acid

(23) by a straightforward sequence (eq 11) involving bromination
followed by reaction with excess sodamide.

28

Similar method-

ology has been employed to synthesize many other alkynes.

29

Dehydrohalogenation with concomitant ether cleavage provides
an efficient route to complex alkynes. For example, reaction of
(24) with sodamide (eq 12) provides the hydroxylic terminal pen-
tyne (25)

29j

Alkyne–allene isomerization has been accomplished

with sodamide.

30

(10)

3 equiv NaNH

2

(21)

(20)

Br

66%

( )

7

( )

7

( )

7

1. Br

2

CO

2

H

(23)

(11)

(22)

CO

2

H

( )

7

2. 3 equiv NaNH

2

, H

+

42–52%

(12)

(25)

(24)

O

Cl

HO

3.5 equiv NaNH

2

NH

3

, NH

4

Cl

75–85%

Aryne Chemistry. Among the many existing methods for the

generation of arynes,.

31

reaction of a halobenzene derivative with

sodamide (as in the example (eq 13) of (26) going to (27)

32a

) is

a commonly employed procedure.

32

The highly reactive interme-

diate arynes can be made to undergo reaction with nucleophiles
other than amide anion. Thus bromobenzene (28) is converted
(eq 14) into aryl sulfide (29).

33a

Sodamide-generated arynes have

also been reacted with more complex species,

34

as illustrated by

the transformation (eq 15) of (30) into (31) followed by cycliza-
tion to (32)

34a

Intramolecular benzyne reactions involving so-

damide have been used successfully in the synthesis of aporphine
alkaloids.

35

Br

OMe

NaNH

2

OMe

H
N

OMe

R

(26)

(13)

(27)

68–85%

RNH

2

Br

NaNH

2

SEt

(28)

(14)

(29)

52%

HMPA–THF

EtSH

(15)

(30)

(31)

Cl

CN

CN

CN

64–66%

(32)

NaNH

2

Generation of Ylides. Sodamide is a common base for the

generation of ylides in the Wittig reaction.

36

The commercially

available instant ylide consists

37a

of a 1:1 stoichiometric mixture

of Methyltriphenylphosphonium Bromide and sodium amide
(eq 16).

37b

N

N

O

O

N

N

(16)

THF
54%

PPh

3

MeBr•NaNH

2

Reaction as a Nucleophile. Nucleophilic addition reactions

are a major feature of sodamide chemistry. Addition followed
by intramolecular attack provides a convenient methodology
for the construction of unusual adducts.

38

Sodamide, sodamide/

A list of General Abbreviations appears on the front Endpapers

background image

SODIUM AMIDE

3

potassamide mixtures, and other alkali metal amides have been
found to catalyze the amination of alkenes.

39

The Chichibabin

reaction and its variants

40

provide a useful route to numerous

substituted heterocycles. The addition–elimination reaction of so-
damide on a heterocyclic substrate is nicely illustrated by the
transformation (eq 17) of (33) into 6-methylisocytosine (34)

41

Nucleophilic addition reactions to nitro-substituted aromatic sub-
strates have been observed.

42

Also intriguing are the various reac-

tion pathways observed for heterocycles containing an appended
trifluoromethyl group.

43

Photochemically assisted additions of

sodamide have been reported (eq 18).

44

Sodamide is also an

effective reagent for accomplishing N-dealkylations (eq 19)

45a

and N-deacylations.

45b

HN

N

O

MeO

HN

N

O

H

2

N

(17)

(33)

(34)

52%

NaNH

2

(18)

H

2

N

hν

, NaNH

2

NH

3

, Et

2

O

57%

N

N

O

Et

HN

N

O

(19)

NH

3

97%

NaNH

2

Cleavage and Rearrangement.

Sodamide is involved in

many cleavage and rearrangement reactions. Cleavage re-
actions,

46

with specific reference to the Haller–Bauer reaction,

47

exemplified by (35) going to (36) (eq 20),

47d

are a convenient

synthetic transform. It is significant that the addition of 1,4-
Diazabicyclo[2.2.2]octane
(DABCO) permits the Haller–Bauer
reaction to be performed with commercial sodamide.

47d

Rear-

rangement reactions involving sodamide are well-known,

48

with

several being common name reactions such as the Truce–Stiles,

49

the Sommelet–Hauser,

50a

and the Stevens

50a

reactions. A typi-

cal Sommelet–Hauser rearrangement is illustrated by (37) going
to (38) (eq 21).

50b

Vinylpyridines undergo polymerization in

sodamide/liquid ammonia.

51

(20)

O

Ph

Ph

O

Ph

NH

2

3 equiv NaNH

2

(35)

(36)

3 equiv DABCO, PhH, heat

73%

NMe

3

I

NMe

2

+

(37)

(38)

(21)

NH

3

97%

NaNH

2

In recent years, sodamide has been combined with other

bases (especially with alkali metal t-butoxides) to create a whole
family of so-called complex bases with exceptional properties (see

Sodium Amide–Sodium tert-Butoxide).

52

Typical applications of

these bases are in the syn elimination depicted

52d

by (39) going to

(40) and (41) (eq 22) and the carbanion alkylation involving the
conversion of (42) to (43) (eq 23).

52f

(22)

Br

Cl

Br

Cl

+

(40)

(41)

(39)

65:35
3:97

NaNH

2

, t-BuONa, 87%

NaNH

2

, t-BuONa, 15-crown-5, 76%

(23)

(42)

(43)

CHO

CHO

Ph

NaNH

2

, t-BuONa

PhCH

2

Br

84%

Related Reagents. Lithium Amide; Potassium Amide; Potas-

sium t-Butoxide; Sodium Amide–Sodium t-Butoxide; Sodium–
Ammonia; Sodium Hydride.

1.

Fieser & Fieser 1967

, 1, 1034.

2.

(a) Vaughn, T. H.; Vogt, R. R.; Nieuwland, J. A., J. Am. Chem. Soc. 1934,
56

, 2120. (b) Hauser, C. R.; Adams, J. T.; Levine, R., Org. Synth., Coll.

Vol. 1955

, 3, 291. (c) Hauser, C. R.; Dunnavant, W. R., Org. Synth. 1960,

40

, 38. (d) Jones, E. R. H.; Eglinton, G.; Whiting, M. C.; Shaw, B. L

Org. Synth., Coll. Vol. 1963

, 4, 404. (e) Khan, N. A.; Deatherage, F. E.;

Brown, J. B., Org. Synth., Coll. Vol. 1963, 4, 851. (f) Greenlee, K. W.;
Henne, A. L., Inorg. Synth. 1946, 2, 128.

3.

(a) Iwashige, T.; Saeki, H., Chem. Pharm. Bull. 1967, 15, 1803.
(b) Ireland, R. E.; Kierstead, R. C., J. Org. Chem. 1966, 31, 2543.

4.

Loontjes, J. A.; van der Leij, M.; Zwanenberg, B., Recl. Trav. Chim.
Pays-Bas
1980

, 99, 39.

5.

Kratchanov, C. G.; Kirtchev, N. A., Synthesis 1971, 317.

6.

Allen, C. F. H.; VanAllan, J., Org. Synth., Coll. Vol. 1955, 3, 727.

7.

Hisano, T.; Tasaki, M.; Tsumoto, K.; Matsuoka, T.; Ichikawa, M., Chem.
Pharm. Bull.
1983

, 31, 2484.

8.

Nishinaga, A.; Itahara, T.; Matsuura, T., Bull. Chem. Soc. Jpn. 1975, 48,
1683.

9.

Shapiro, E. L.; Leggatt, T.; Weber, L.; Olivetto, E. P.; Tanabe, M.; Crowe,
D. F., Steroids 1964, 3, 183.

10.

Rabideau, P. W.; Huser, D. L., J. Org. Chem. 1983, 48, 4266.

11.

(a) Reinecke, M. G.; Hollingworth, T. A., J. Org. Chem. 1972, 37, 4257.
(b) Brandsma, L.; de Jong, R. L. P., Synth. Commun. 1990, 20, 1697.

12.

(a) Schipperijn, A. J.; Smael, P., Recl. Trav. Chim. Pays-Bas 1973, 92,
1121. (b) Schipperijn, A. J.; Smael, P., Recl. Trav. Chim. Pays-Bas 1973,
92

, 1159.

13.

(a) Levine, R.; Dimmig, D. A.; Kadunce, W. M., J. Org. Chem. 1974,
39

, 3834. (b) Yamamoto, M.; Sugiyama, N., Bull. Chem. Soc. Jpn. 1975,

48

, 508. (c) Kaiser, E. M.; Bartling, G. J.; Thomas, W. R.; Nichols, S.

B.; Nash, D. R., J. Org. Chem. 1973, 38, 71. (d) Harris, T. M.; Harris, C.
M.; Wachter, M. P., Tetrahedron 1968, 24, 6897. (e) Vanderwerf, C. A.;
Lemmermann, L. V., Org. Synth., Coll. Vol. 1955, 3, 44. (f) Coffman, D.
D., Org. Synth., Coll. Vol. 1955, 3, 320. (g) Hauser, C. R.; Adams, J. T.;
Levine, R., Org. Synth., Coll. Vol. 1955, 3, 291. (h) Potts, K. T.; Saxton,
J. E., Org. Synth. 1960, 40, 68. (i) Kaiser, E. M.; Bartling, G. J., J. Org.
Chem.
1972

, 37, 490. (j) Rash, F. H.; Boatman, S.; Hauser, C. R., J. Org.

Chem. 1967

, 32, 372.

14.

(a) Gospodova, T. S.; Stefanovsky, Y. N., Monatsh. Chem. 1990, 121,
275. (b) Viteva, L. Z.; Stefanovsky, Y. N., Monatsh. Chem. 1982, 113,
181.

Avoid Skin Contact with All Reagents

background image

4

SODIUM AMIDE

15.

Tsujino, Y.; Shibata, S.; Katsuyama, A.; Kisaki, T.; Kaneko, H.,
Heterocycles 1982

, 19, 2151.

16.

(a) Harris, T. M.; Harris, C. M., Org. React. 1969, 17, 155. (b) Harris, T.
M.; Harris, C. M., J. Org. Chem. 1966, 31, 1032.

17.

Kashima, C.; Yammamoto, M.; Kobayashi, S.; Sugiyama, N., Bull.
Chem. Soc. Jpn.
1974

, 47, 1805.

18.

Pendarvis, R. O.; Hampton, K. G., J. Org. Chem. 1974, 39, 2289.

19.

Hampton, K. G.; Harris, T. M.; Hauser, C. R., Org. Synth. 1971, 51, 128.

20.

(a) duFeu, E. C.; McQuillin, F. J.; Robinson, R., J. Chem. Soc. 1937, 53.
(b) Cornforth, J. W.; Robinson, R., J. Chem. Soc. 1949, 1855.

21.

Bumgardner, C. L.; Iwerks, H., J. Am. Chem. Soc. 1966, 88, 5518.

22.

Halleux, A.; Reimlinger, H.; Viehe, H. G., Tetrahedron Lett. 1970, 3141.

23.

Heasley, V. L.; Lais, B. R., J. Org. Chem. 1968, 33, 2571.

24.

(a) Fisher, F.; Applequist, D. E., J. Org. Chem. 1965, 30, 2089. (b) Salaun,
J. R.; Conia, J. M., J. Chem. Soc., Chem. Commun. 1971, 1579. (c) Koster,
R.; Arora, S.; Binger, P., Synthesis 1971, 322. (d) Arora, S.; Binger,
P.; Koster, R., Synthesis 1973, 146. (e) Fitjer, L.; Conia, J.-M., Angew.
Chem., Int. Ed. Engl.
1973

, 12, 332.

25.

Kirmse, W.; von Bullow, B.-G.; Schepp, H., Justus Liebigs Ann. Chem.
1966, 691, 41.

26.

Vaughan, T. H.; Vogt, R. R.; Nieuwland, J. A., J. Am. Chem. Soc. 1934,
56

, 2120.

27.

Lespieau, R.; Bourguel, M., Org. Synth., Coll. Vol. 1941, 1, 191.

28.

Khan, N. A.; Deatherage, F. E.; Brown, J. E., Org. Synth., Coll. Vol. 1963,
4

, 851.

29.

(a) Khan, N. A., Org. Synth., Coll. Vol. 1963, 4, 969. (b) Ashworth, P. J.;
Mansfield, G. H.; Whiting, M. C., Org. Synth., Coll. Vol. 1963, 4, 128.
(c) Messeguer, A.; Serratosa, F.; Rivera, J., Tetrahedron Lett.. 1973, 2895.
(d) Armitage, J. B.; Jones, E. R. H.; Whiting, M. C., J. Chem. Soc. 1953,
3317. (e) Bohlmann, F., Chem. Ber. 1951, 84, 545. (f) Jones, E. R. H.;
Eglinton, G.; Whiting, M. C. Shaw, B. L., Org. Synth., Coll. Vol. 1963,
4

, 404. (g) Wasserman, H. H.; Wharton, P. S., J. Am. Chem. Soc. 1960,

82

, 661. (h) Newman, M. S.; Geib, J. R.; Stalick, W. M., Org. Prep.

Proced. Int. 1972

, 4, 89. (i) Brandsma, L.; Harryvan, E.; Arens, J. F.,

Recl. Trav. Chim. Pays-Bas 1968

, 87, 1238. (j) Jones, E. R. H.; Eglinton,

G.; Whiting, M. C., Org. Synth., Coll. Vol. 1963, 4, 755.

30.

(a) Carr, M. D.; Gan, L. H.; Reid, I., J. Chem. Soc., Perkin Trans. 2 1973,
672. (b) Montijn, P. P.; Kupecz, A.; Brandsma, L.; Arens, J. F., Recl.
Trav. Chim. Pays-Bas
1969

, 88, 958.

31.

Hoffmann, R. W., Dehydrobenzene and Cycloalkynes; Academic: New
York, 1967.

32.

(a) Biehl, E. R.; Patrizi, R.; Reeves, P. C., J. Org. Chem. 1971, 36, 3252.
(b) Biehl, E. R.; Stewart, W.; Marks, A.; Reeves, P. C., J. Org. Chem.
1979, 44, 3674. (c) Levine, R.; Biehl, E. R., J. Org. Chem. 1975, 40,
1835. (d) Biehl, E. R.; Smith, S. M.; Reeves, P. C., J. Org. Chem. 1971,
36

, 1841. (e) Biehl, E. R.; Nieh, E.; Hsu, K. C., J. Org. Chem. 1969, 34,

3595. (f) Biehl, E. R.; Hsu, K. C.; Nieh, E., J. Org. Chem. 1970, 35, 2454.
(g) Kraakman, P. A.; Valk, J.-M.; Niederländer, H. A. G.; Brower, D. B.
E.; Bickelhaupt, F. M.; de Wolf, W. H.; Bickelhaupt, F.; Stam, C. H., J.
Am. Chem. Soc.
1990

, 112, 6638. (h) Apeloig, Y.; Arad, D.; Halton, B.;

Randall, C. J., J. Am. Chem. Soc. 1986, 108, 4932.

33.

(a) Caubere, P., Bull. Soc. Chem. Fr. 1967, 3446, 3451. (b) Carre, M.
C.; Ezzinadi, A. S.; Zouaoui, M. A.; Geoffroy, P.; Caubere, P., Synth.
Commun.
1989

, 19, 3323.

34.

(a) Skorcz, J. A.; Kaminski, F. E., Org. Synth. 1968, 48, 53. (b)
Carre, M.-C.; Gregoire, B.; Caubere, P., J. Org. Chem. 1984, 49, 2050.
(c) Loubinoux, B.; Caubere, P., Synthesis 1974, 201. (d) Buske, G. R.;
Ford, W. T., J. Org. Chem. 1976, 41, 1995.

35.

Kametani, T.; Fukumoto, K.; Nakano, T., J. Heterocycl. Chem. 1972, 9,
1363.

36.

(a) Moiseenkov, A. M.; Schaub, B.; Margot, C.; Schlosser, M.,
Tetrahedron Lett. 1985

, 26, 305. (b) Schaub, B.; Blaser, G.; Schlosser,

M., Tetrahedron Lett. 1985, 26, 307. (c) Schlosser, M.; Schaub, B.; de
Oliveira-Neto, J.; Jeganathan, S., Chimia 1986, 40, 244. (d) Schaub, B.;
Jeganathan, S.; Schlosser, M., Chimia 1986, 40, 246. (e) Dauphin, G.;
David, L.; Duprat, P.; Kergomard, A.; Veshambre, H., Synthesis 1973,
149. (f) Takahashi, H.; Fujiwara, K.; Ohta, M., Bull. Chem. Soc. Jpn.
1962, 35, 1498. (g) Yamamoto, Y.; Schimidbaur, H., J. Chem. Soc., Chem.
Commun.
1975

, 668. (h) Quast, H.; Jakobi, H., Chem. Ber. 1991, 124,

1619.

37.

(a) Schlosser, M.; Schaub, B., Chimia 1982, 36, 396. (b) Ciana, L.
D.; Dressick, W. J.; von Zelewsky, A., J. Heterocycl. Chem. 1990, 27,
163.

38.

(a) Barnard, I. F.; Elvidge, J. A., J. Chem. Soc., Perkin Trans. 1
1983, 1813. (b) Yamagouchi, K., Bull. Chem. Soc. Jpn. 1976, 49,
1366.

39.

Pez, G. P.; Galle, J. E., Pure Appl. Chem. 1985, 57, 1917.

40.

Vorbruggen, H., Adv. Heterocycl. Chem. 1990, 49, 117.

41.

Botta, M.; De Angelis, F.; Finizia, G.; Gambacorta, A.; Nicoletti, R.,
Synth. Commun. 1985

, 15, 27.

42.

Gandhi, S. S.; Gibson, M. S.; Kaldas, M. L.; Vines, S. M., J. Org. Chem.
1979, 44, 4705.

43.

(a) Kobayashi, Y.; Kumadaki, I.; Taguchi, S.; Hanzawa, Y., Tetrahedron
Lett.
1970

, 3901. (b) Kobayashi, Y.; Kumadaki, I.; Hanzawa, Y.; Minura,

M., Chem. Pharm. Bull. 1975, 23, 2044. (c) Kobayashi, Y.; Kumadaki,
I.; Hanzawa, Y.; Mimura, M., Chem. Pharm. Bull. 1975, 23, 636.
(d) Kobayashi, Y.; Kumudaki, I.; Taguchi, S.; Hanzawa, Y., Chem.
Pharm. Bull.
1972

, 20, 1047.

44.

Tintel, C.; Rietmeyer, F. J.; Cornelisse, J., Recl. Trav. Chim. Pays-Bas
1983, 102, 224.

45.

(a) Hirai, Y.; Egawa, H.; Yamada, S.; Yamazaki, T., Heterocycles 1983,
20

, 1243. (b) Fraenkel, G.; Cooper, J. W., J. Am. Chem. Soc. 1971, 93,

7228.

46.

(a) Furukawa, N.; Tanaka, H.; Oae, S., Bull. Chem. Soc. Jpn. 1968,
41

, 1463. (b) Shiotani, S.; Kometani, T., Chem. Pharm. Bull. 1973, 21,

1160.

47.

(a) Hamlin, K. E.; Weston, A. W., Org. React. 1957, 9, 1. (b) Alexander, E.
C.; Tom, T., Tetrahedron Lett. 1978, 1741. (c) Paquette, L. A.; Maynard,
G. D., J. Org. Chem. 1989, 54, 5054. (d) Kaiser, E. M.; Warner, C. D.,
Synthesis 1975

, 395.

48.

(a) Mason, J. G.; Youssef, A. K.; Ogliaruso, M. A., J. Org. Chem. 1975,
40

, 3015. (b) Youssef, A. K.; Ogliaruso, M. A., J. Org. Chem. 1973, 38,

3998. (c) Sarel, S.; Klug, J. T.; Taube, A., J. Org. Chem. 1970, 35, 1850.
(d) Klein, K. P.; Hauser, C. R., J. Org. Chem. 1966, 31, 4275.

49.

Crowther, G. P.; Hauser, C. R., J. Org. Chem. 1968, 33, 2228.

50.

(a) Pine, S. H., Org. React. 1970, 18, 403. (b) Kantor, S. W.; Hauser, C.
R., J. Am. Chem. Soc. 1951, 73, 4122. (c) Giumanini, A. G.; Trombini,
C.; Lercker, G.; Lepley, A. R., J. Org. Chem. 1976, 41, 2187.

51.

Laurin, D.; Parravano, G., J. Polym. Sci. Part A-1, Polym. Chem. Ed.
1968, 6, 1047.

52.

(a) Caubere, P., Acc. Chem. Res. 1974, 7, 301. (b) Caubere, P., Top.
Curr. Chem.
1978

, 73, 49. (c) Ndebeka, G.; Raynal, S.; Caubere, P., J.

Org. Chem. 1980

, 45, 5394. (d) Croft, A. P.; Bartsch, R. A., J. Org.

Chem. 1983

, 48, 876. (e) Croft, A. P.; Bartsch, R. A., Tetrahedron Lett.

1983, 24, 2737. (f) Carre, M. C.; Ndebeka, G.; Riondel, A.; Bourgasser,
P.; Caubere, P., Tetrahedron Lett. 1984, 25, 1551. (g) Raynal, S., Eur.
Polym. J.
1986

, 22, 559.

John L. Belletire & R. Jeffery Rauh

The University of Cincinnati, Cincinnati, OH, USA

A list of General Abbreviations appears on the front Endpapers


Wyszukiwarka

Podobne podstrony:
potassium amide eros rp193
sodium perborate eros rs094
sodium borohydride eros rs052
benzyl chloride eros rb050
hydrobromic acid eros rh031
chloroform eros rc105
magnesium eros rm001
oxalyl chloride eros ro015
potassium permanganate eros rp244
peracetic acid eros rp034
p toluenesulfonic acid eros rt134
hexamethylenetetramine eros rh019
copper II chloride eros rc214
glyoxylic acid eros rg009
Sodium hydroxide
p methoxybenzaldehyde eros rm081
Rozdział V Eros

więcej podobnych podstron