Prędkość
Wielkość wektorowa, która określa zarówno szybkość ruchu, jak i jego kierunek w danej chwili.
Śą Śą Śą
Śą r(t) - r(t0) dr
v a" lim a"
Prędkość chwilowa:
t t0
t - t0 dt
JednostkÄ… jest metr na sekundÄ™.
Przyspieszenie
Wielkość wektorowa, która określa zmiany wektora prędkości w czasie (zarówno wartości, jak i kierunku).
Śą Śą Śą Śą
2
Śą v(t) - v(t0) dv d r
a a" lim a" =
Przyspieszenie chwilowe:
t t0
t - t0 dt dt2
Jednostka: metr na sekundÄ™ na sekundÄ™.
Tor ruchu to w kinematyce krzywa zakreślona w przestrzeni przez poruszający się punkt materialny. Na
podstawie kształtu toru ruchu, ruchy można sklasyfikować jako:
" prostoliniowe,
" krzywoliniowe,
o krzywoliniowe płaskie,
o krzywoliniowe przestrzenne.
Ruch punktu we współrzędnych prostokątnych
Położenie punktu w przestrzeni możemy określić za pomocą trzech współrzędnych w prostokątnym układzie
współrzędnych Oxyz:
x=f (t) y=f (t) z=f (t)
1 2 3
Są to równania ruchu punktu.
Promień-wektor danego punktu A jest to wektor łączący początek nieruchomego układu współrzędnych i dany
punkt; jest to wektor określający położenie w przestrzeni danego punktu. Gdy punkt się porusza, jego promień-
wektor r zmienia z upływem czasu swą wartość i kierunek. r=r(t)
Promień wektor można przedstawić w postaci sumy geometrycznej:
r=ix(t)+jy(t)+kz(t)
gdzie i,j,k oznaczają wersory odpowiednich osi obranego układu współrzędnych.
Prędkością punktu nazywamy zmianę wektora wodzącego względem czasu, tj. jego pochodną względem czasu
Śą Śą
" r dr Śą
lim0 = = v . Wzór ten można zapisać również w postaci sumy geometrycznej v=v i+v j+v k , a stąd
x y z
" t - >
" t dt
dx dy dz
uzyskujemy wzory na współrzędne prędkości vx = vy = vz =
dt dt dt
Wartość prędkości określa wzór: v = vx 2 + vy 2 + vz 2
Przyspieszeniem punktu jest pochodną prędkości względem czasu albo drugą pochodną wektora wodzącego
Śą Śą
2
dv d r
względem czasu. . Tak jak w przypadku prędkości, możemy uzyskać wzory na współrzędne
a = =
dt dt2
Śą
Śą Śą
2 2
dvy d 2 y
dvx d x dvz d z
przyspieszenia ; ;
ax = = ay = = az = =
2
dt dt2 dt dt2 dt dt
Gdzie a = ax 2 + ay 2 + az 2
Ruch punktu we współrzędnych biegunowych
Prędkość:
Przyspieszenie:
Ruch punktu we współrzędnych walcowych:
Przyspieszenie i prędkość:
-------------------------------------------------------------------------------------------------------------------------
Stopniem swobody nazywa się możliwość wykonania ruchu ciała niezależnego od innych ruchów.
Punkt materialny ma na płaszczyznie dwa, a w przestrzeni trzy stopnie swobody.
Ciało doskonale sztywne ma na płaszczyznie trzy, a w przestrzeni sześć stopni swobody.
Trzy stopnie swobody ciała sztywnego na płaszczyznie oznaczają możliwość dwóch przesunięć niezależnych w
kierunku osi x i y oraz możliwość obrotu ciała w płaszczyznie Oxy. Sześć stopni swobody ciała w przestrzeni
oznaczają możliwość trzech niezależnych przesunięć w kierunku osi x, y i z oraz możliwość niezależnego obrotu
ciała wokół tych osi.
-------------------------------------------------------------------------------------------------------------------------
jest to taki ruch ciała sztywnego w
którym wszystkie jego punkty doznają
tych samych przesunięć
Jest to ruch ciała sztywnego wokół
chwilowej osi obrotu.
Ruchem płaskim ciała sztywnego nazywamy ruch, podczas którego wszystkie punkty ciała poruszają się w
płaszczyznach równoległych do pewnej nieruchomej płaszczyzny zwanej płaszczyzną kierującą
Ruch kulisty to ruch ciała sztywnego, podczas którego jeden jego punkt zwany środkiem ruchu kulistego jest
nieruchomy. Ciało sztywne może obracać się tylko dookoła osi przechodzących przez punkt nieruchomy 0, który
nazywamy środkiem ruchu kulistego (ma trzy stopnie swobody). Torem dowolne punktu jest powierzchnia kuli o
środku w punkcie zwanym środkiem ruchu kulistego. W ruchu tym mamy dwa układy odniesienia związane ze
sobą za pomocą trzech kątów zwanych kątami Eulera.
Kąty Eulera to układ trzech kątów, za pomocą których można jednoznacznie określić wzajemną orientację dwu
kartezjańskich układów współrzędnych o jednakowej skrętności w trójwymiarowej przestrzeni euklidesowej.
¸ kÄ…t mierzony od osi z do osi OÅ›; jest to kÄ…t nutacji.
È kÄ…t mierzony od osi x do osi wÄ™złów ON ; jest to kÄ…t precesji.
kÄ…t mierzony od osi wÄ™złów ON do osi O¾; jest to kÄ…t obrotu wÅ‚asnego.
Ruch względny(złożony)
Ruch punktu lub bryły względem układu nieruchomego(Oxyz) nazywamy ruchem
bezwzględnym, a ruch tego samego punktu lub bryły względem układu
ruchomego(O x y z ) ruchem względnym. Ruch układu ruchomego względem
układu nieruchomego to ruch unoszenia.
Tor, jaki zakreśli punkt w układzie nieruchomym, nazywamy torem bezwzględnym , a w układzie ruchomym
torem względnym. Każdy z punktów toru względnego, zatem i punkt znajdujący się w tym samym miejscu co
punkt , zakreśli pewien tor . Ruch tego punktu względem układu
nieruchomego nazywamy ruchem unoszenia punktu w rozważanej
chwili.
Prędkość względna prędkość tego samego punktu w ruchomym
układzie odniesienia skierowana wzdłuż stycznej do toru
względnego.
Prędkość bezwzględna prędkość punktu względem
nieruchomego układu odniesienia skierowana wzdłuż stycznej do
toru bezwzględnego. Prędkość ta jest równa sumie geometrycznej
prędkości unoszenia ve oraz prędkości względnej vr.
Przyśpieszenie bezwzględne punktu w ruchu złożonym jest równe sumie trzech przyśpieszeń: unoszenia a ,
u
względnego a i Coriolisa : a
w c
Wyszukiwarka
Podobne podstrony:
Fizyka egzamin Politechnika Poznańska (PP)Podstawy automatyki wykład 1 Politechnika Poznańska PPPodstawy automatyki wykład 4 Politechnika Poznańska PPStatyka Politechnika Poznańska PPSuwnica schemat kinematyczny (Politechnika Gdańska)Egzam biologia politechnika poznańskaPL SQL Procedury i funkcje składowane Politechnika PoznańskaWzorzec realizacji pracy dyplomowej Politechnika PoznańskaZbiornik Politechnika PoznańskaProgramowanie warsztatowe tokarki CNC ze sterowaniem Sinumerik 840D (Politechnika Poznańska)Programowanie warsztatowe tokarki CNC ze sterowaniem Sinumerik 840D (Politechnika Poznańska)GPWC Politechnika PoznańskaMaszynoznawstwo notatki (Politechnika Poznańska)Laboratorium Ergomomii Politechniki Poznańskiej2008 marzec OKE Poznań model odp ppwięcej podobnych podstron