Stateczn wzory transf


WZORY TRANSFORMACYJNE DLA PRTA PROSTEGO WG TEORII RZDU 2-GO
EIij EIij
o o
M = Å"(aij Å"Õij + bij Å"Õ - cij Å"È )+ M , M = Å"(a Å"Õ + bji Å"Õij - c Å"È )+ M ,
ij ji ij ij ji ji ij ji
Lij Lij ji ji
EIij EIij
o
Vij = Å"(- cij Å"Õij - c Å"Õ + dij Å"È )+Vijo , Vji = Å"(- cij Å"Õij - c Å"Õ + dij Å"È )+Vji
ji ji ij ji ji ij
L2 L2
ij ij
gdzie aij, aji, bij = bji, cij = aij + bji, cji = aji + bij, dij = dji = cij + cji - 2 (lub +2 ) sÄ… funkcjami
ij ij
parametrów ij = Lij Å" Nij / EIij (dla prÄ™tów Å›ciskanych) lub ij = Lij Å" Nij / EIij (dla prÄ™tów
rozciÄ…ganych)
aij aji bij = bji cij cji dij = dji
i j
zależnymi od typu
pręta.
² () Ń() Ń() ´ ()
Ä… () Ä… ()
Oznaczenia tych
funkcji dla wybranych
4 4 2 6 6 12
typów prętów (o stałej
Ä… ( ) Ä… ( ) ²( ) Ń( )
Ń( )
´ ( )
sztywności) ściskanych
i rozciÄ…ganych oraz 2
Ä… 2 ´ ()
()
Ä… 2
0 0() 0
wartości tych funkcji
3 0 0 3 0 3
dla prętów o zerowej
sile osiowej (ij = 0)
Ä… 2
( )
Ä… 2 2
´ ( )
0 0( ) 0
to jest wg teorii rzędu
Ä… 2 2 Ä… 2 2 2 2
() () ² ()
0 0 0
1-go zestawiono
w tabeli obok
1 1 -1 0 0 0
( ) ² ( )
Ä… 2 2 Ä… 2 2 2 2
( )
0 0 0
Ä… 2 2 2
()
0 0 0 0 0
0 0 0 0 0 0
Ä… 2 2 2
( )
0 0 0 0 0
0 0 0 0 0 - 2
0 0 0 0 0 0
2

0 0 0 0 0
Poniżej podano, przykładowo, szczegółowe postaci wzorów dla prętów ściskanych:
EIij
o
M = Å"(Ä…(ij ) Å"Õij + ² (ij ) Å"Õ -Å(ij ) Å"È )+ M (ij ) ,
ij ji ij ij
Lij
EIij
o
M = Å"(Ä…(ij ) Å"Õ + ² (ij ) Å"Õij -Å(ij ) Å"È )+ M (ij ) ,
ji ji ij ji
Lij
EIij
o
Vij = Å"(-Å(ij ) Å"Õij -Å(ij ) Å"Õ + ´ (ij ) Å"È )+ Vij (ij ) ,
ji ij
L2
ij
EIij
o
V = Å"(-Å(ij ) Å"Õij -Å(ij ) Å"Õ + ´ (ij ) Å"È )+ V (ij ) ,
ji ji ij ji
L2
ij
EIij
o
M = Å"(Ä… 2
(ij ) Å"Õij -Ä… 2
(ij ) Å"È )+ M (ij ) , M = 0 ,
ij ij ij ji
Lij
EIij EIij
o o
Vij = Å"(-Ä… 2 2 2
(ij ) Å"Õij + ´ (ij ) Å"È )+ Vij (ij ) , V = Å"(-Ä… 2
(ij ) Å"Õij + ´ (ij ) Å"È )+ V (ij )
ij ji ij ji
L2 L2
ij ij
http://www.iil.pwr.wroc.pl/zukowski 1
EIij
o
M = Å"(Ä… 2 2 2 2
(ij )Õij - ² (ij )Õ )+ M (ij ) ,
ij ji ij
Lij
EIij
o
M = Å"(Ä… 2 2 2 2
(ij )Õ - ² (ij )Õij )+ M (ij ) , Vij = Vijo , V = 0 ,
ji ji ji ji
Lij
EIij
o o
M = Å"Ä… 2 2 2
(ij ) Å"Õij + M (ij ) , M = 0 , Vij = Vij (ij ) , V = 0
ij ij ji ji
Lij
EIij 2 EIij 2
o o
M = 0 , M = 0 , Vij = Å"(- ij Å"È )+Vij (ij ) , V = Å"(- ij Å"È )+V (ij ) .
ij ji ij ji ij ji
L2 L2
ij ij
Funkcje określające parametry we wzorach transformacyjnych mają postaci:
- dla pręta "sztywno-sztywnego"
- ściskanego
sin  -  Å" cos   - sin 
Ä…() =  Å" , ² () =  Å" ,
2 Å" (1- cos) -  Å"sin  2 Å" (1- cos ) -  Å" sin 
1- cos 
Ń() = Ä…() + ² () = 2 Å" ,
2 Å" (1- cos) -  Å"sin 
sin 
´ () = 2 Å"Ń() - 2 = 3 Å" ,
2 Å" (1- cos ) -  Å" sin 
- rozciÄ…ganego
sh -  Å" ch  - sh
Ä…( ) =  Å" , ² ( ) =  Å" ,
2 Å" (ch -1) -  Å" sh 2 Å" (ch -1) -  Å" sh
1- ch - sh
2
Ń( ) =  Å" , ´ ( ) = 3 Å" ,
2 Å" (ch -1) -  Å" sh 2 Å" (ch -1) -  Å" sh
- dla pręta "sztywno-przegubowego"
- ściskanego
2
² () sin 
Ä… 2 Ä…() - = 2 Å" ,
() =
Ä…() sin  -  Å" cos
2
Ń () cos
2
´ () = ´ () - = Ä… 2 - 2 = 3 Å" ,
()
Ä…() sin  -  Å" cos 
- rozciÄ…ganego
sh ch
2 3
Ä… 2 2
( ) =  Å" , ´ ( ) =  Å" ,
 Å" ch - sh  Å" ch - sh
- dla pręta "sztywno-łyżwowego"
- ściskanego
2
2
Ń () ´ ()
Ä… 2 2 Ä…() - = Ä…() Å" =  Å" ctg ,
() =
´ () ´ ()
2
Ń () 
2 2
² () = ² () - = - ,
´ () sin 

- rozciÄ…ganego Ä… 2 2 2 2
( ) =  Å" cth , ² ( ) = - ,
sh
- dla wspornika
- Å›ciskanego Ä… 2 2 2 - Å" tg ,
() =
- rozciÄ…ganego Ä… 2 2 2
( ) =  Å" th .
2 http://www.iil.pwr.wroc.pl/zukowski


Wyszukiwarka

Podobne podstrony:
wzory transformacyjne statecznosc
MP wzory transf 1
Wzory transf DSO
wzory transformata Laplacea
MP wzory transf
transformator 5
ANOVA A Transformacja
Instructions on transfering
wzory protokołów pomiarowych zap1102012 z1
Wzory fizyczne
Transformacja lorentza
DropTargetContext TransferableProxy

więcej podobnych podstron