Transformata Laplace a wzory Tw. Heaviside a f(t) F (s) n
P (sk) k L-1{F (s)} = es t Q (sk) 1 k=1 1 s Tw. Cauchy ego o residuach n! tn n sn+1 L-1{F (s)} = ress=s [F (s)est] k k=1 1 eat s - a Obliczanie residuów: w przypadku bieguna jednokrotnego: a sin(at) s2 + a2 ress=s [F (s)est] = lim [(s - sk)F (s)est] k ssk s w przypadku bieguna n-krotnego: cos(at) s2 + a2 1 dn-1 ress=s [F (s)est] = lim [(s - sk)nF (s)est] k a ssk (n - 1)! dsn-1 sinh(at) s2 - a2 s cosh(at) s2 - a2 n! eattn (s - a)n+1 b eat sin(bt) (s - a)2 + b2 s - a eat cos(bt) (s - a)2 + b2 eatg(t) G(s - a) ´(t) 1 ´(t - a) e-as g(t - a)1 - a) e-asG(s) I(t g sG(s) - g(0+) g s2G(s) - sg(0+) - g (0+) g " h G(s)H(s)