Obl statyczne


Zwoleń Bud PUP.xls Strona 1
O B L I C Z E N I A S T A T Y C Z N E
Budynku Powiatowego Urzędu Pracy w Zwoleniu przy ul. Ludowej 7.
A. Budynek projektowany.
1. Wiązar drewniany płatwiowo-kleszczowy z dwiema płatwiami pośrednimi.
L2
L1
1.1 Założenia
Rozstaw wiązarów a = 3,50 m
-"- krokwi a1 = 0,88 m
Pokrycie dachu blachodachówką.
Strefa śniegowa 3
Strefa wiatrowa 1
1.2 Wielkości geometryczne :
o
Ä… = 25 sin Ä… = 0,422
cos Ä… = 0,906
L1 = 320,0 cm<4,5m L2 = 170,0 cm<2,7m
1.3 Zestawienie obciążeń na 1m2
- ciężar pokrycia (wg PN-82/B-02001) :
blachodachówka gr. 0,88 mm 0,097 kN/m 2 x 1,1 = 0,107 kN/m 2
łaty + kontrłaty 0,069 kN/m 2 x 1,1 = 0,076 kN/m 2
deskowanie 5,5*0,025= 0,138 kN/m 2 x 1,1 = 0,151 kN/m 2
kN/m 2 kN/m 2
gch = 0,304 g = 0,334
- obciążenie śniegiem (wg PN-80/B-0,2010/Az1):
S = Sk * Å‚f ; Sk = Qk * c ; Å‚f = 1,5 ; C2 = 1,07
o
Ä… = 25 C1= 0,8
Qk = 1,2 kN/m 2
Sn1=Qk*C2* Å‚f= 1,920 kN/m 2
- obciążenie wiatrem (wg PN-77/B-0,2011):
Å‚f = 1,3 qk = 0,25 kN/m 2 ² = 1,8
Rodzaj dachu : dwuspadowy C = 0,175
Rodzaj terenu : B Ce = 0,8
pk = qk * Ce * C * ² = 0,063 kN/m 2
p = pk * łf = 0,082 kN/m 2 prostopadle do połaci dachu
1.4 Obliczenie krokwi pośredniej.
1.4.1 Zestawienie obciążeń na 1 m 2
Obciążenia Obciążenie do połaci Obciążenie do połaci
Ciężar pokrycia g * cos ą = 0,303 g * sin ą = 0,141
Åšnieg Sn1 * cos2 Ä… = 1,577 Sn1*sin Ä… * cos Ä… = 0,735
Wiatr p = 0,082
q'x = 1,962 q'y = 0,876
- obciążenie prostopadłe do połaci (charakterystyczne) q' = gchcosą +Skcos2ą + pk =
xch
= 1,3896937 kN/m2
ciężar własny krokwi g1ch = 0,0539 kN/m g1 = 0,05929 kN/m
Obciążenie na 1 mb krokwi :
qx = q'x * a1 + g1 = 1,786 kN/m qxch = q' *a+g1ch = 1,27683046 kN/m
xch
qy = q'y * a1= 0,771 kN/m
1.4.2 Obliczenie wielkości statycznych :
Zwoleń Bud PUP.xls Strona 2
Mx = (qx * l12 ) / 8 = 2,286 kNm
Przyjęto przekrój : b x h
gdzie : b = 7,0 cm
h = 14,0 cm
Przyjęto drewno iglaste o wilgotności 12 % klasy C 27 o wytrzymałości
kN/cm2
na zginanie fm,d = 1,29
kN/cm2
na ściskanie wzdłuż włókien fc,o.d = 1,26
kN/cm2
fc,o,k = 2,20
Wx = ( b * h2 ) / 6 = 228,67 cm3
A = b * h = 98 cm2
Ix = (b * h3 ) / 12 = 1600,67 cm4
ix = Ix / A = 4,04 cm
N = (qy * l1 ) / 2 = 1,23 kN
·2 = 0,004 c = l1 / ix = 79,18
ke = ( Ä„2 * Ek ) / ( fc,o,k * c 2 ) = 0,501
Z = [ 1 + (1+·2*c*(fc,o,d/fm,d))*ke] = 1,655
kw = 0,5 * (Z- Z2 - 4*ke ) = 0,399 m. = 1,00
Ãc = ( N / (A*kw) + [(Mx*fc,o,d)/(Wx*fm,d)] * [(1/(1-(kw/ke)*(N/A)*(1/fc,o,k))]< fc,o,d * m
Ãc = kN/cm2
1,009 kN/cm2 < fc,o,d * m = 1,26
Sprawdzenie ugięcia :
f = (5 /384 ) * [(qxch*l4 )/(E*Ix )] = 1,210 cm
f = 1,210 cm < fd = l1 / 200 = 1,60 cm
1.5 Obliczenie płatwi .
Zestawienie obciążeń .
Obciążenia zestawiono jako siły pionowe na 1 m2 na pochylenie dachu ( na
kierunek ciężaru pokrycia ).
Obciążenie wiatrem rozkłada sie na dwa kierunki :
a) Obciążenie obliczeniowe pionowe na 1 m2 :
Ciężar pokrycia g = 0,334 kN/m2
Åšnieg S1 = Sn1 * cos Ä… = 1,74 kN/m2
Wiatr pr = p * cos Ä… = 0,07 kN/m2
kN/m2
q1 = 2,15
ciężar własny płatwi g1 = 0,08712 kN/m
Obciążenie obl. pionowe na 1 mb płatwi .
qx = q1 * (0,5*l1 + l2 ) + g1 = 7,177 kN/mb
Obciążenie obl. poziome na 1 m2
Wiatr pn = p * sin Ä… = 0,0346 kN/m2
Obciążenie obl. poziome na 1 mb płatwi :
qy = pn * (0,5*l1 + l2 ) = 0,11 kN/mb
b) Obciążenie charakterystyczne pionowe na 1 m2 :
kN/m2
Ciężar pokrycia gch = 0,304
Åšnieg S1 = Sk * cos Ä… = 1,16 kN/m2
kN/m2
Wiatr pr = pk * cos Ä… = 0,06
kN/m2
q1ch = 1,52
ciężar własny płatwi g1ch = 0,0792 kN/m
Obciążenie char. pionowe na 1 mb płatwi .
qx = q1 * (0,5*l1 + l2 ) + g1ch = 5,098 kN/mb
Obciążenie char. poziome na 1 m2
kN/m2
Wiatr pn = pk * sin Ä… = 0,0266
Obciążenie char. poziome na 1 mb płatwi :
qy = pn * (0,5*l1 + l2 ) = 0,09 kN/mb
Zwoleń Bud PUP.xls Strona 3
Płatew liczy się jako belkę wolnopodpartą zginaną ukośnie .
płatew rozstaw mieczy - e = 0,90 m
lo = a - 2 * e = 1,7 m
miecze lx = 1,7 m
e e ly = 3,5 m
Mx = (qx * lx 2 ) / 8 = 2,59 kNm
słupek My = (qy * ly 2) / 8 = 0,17 kNm
Przyjęto przekroj płatwi b1 x h1
gdzie : b1 = 12,0 cm
h1 = 12,0 cm
Wx = (b1 * h1 2 ) / 6 = cm4
288 cm3;Jx =(b1*h13)/12 = 1728
Wy = (h1 * b1 2 ) / 6 = cm4
288 cm3;Jy =(b13*h1)/12 = 1728
Sprawdzenie naprężenia :
Ãm = (Mx / Wx ) + (My / Wy ) < fm,d * m m. = 1,00
Ãm = kN/cm2
Ã
Ã
Ã
0,961 kN/cm2 < fm,d*m = 1,290
Sprawdzenie ugięcia.
ugięcie dopuszczalne:
fxdop = 1/200 * lx = 8,5 mm
fydop = 1/200 * ly = 17,5 mm
fdop = f2 +f2 = 19,455076 mm
xdop ydop
ugięcie rzeczywiste:
fx =5/384*qx*l4 /(Em*Jx) = 3,565 mm
x
fy =5/384*qy*l4 /(Em*Jy) = 1,103 mm
y
f = f2 + f2 = 3,732 mm < fdop= 19,455076 mm
x y
1.6 Obliczenie słupków.
1.6.1 Słupki podpierające płatwie pośrednie. h1= 3,8 m.
- z poz. 1.5 qx x a = 25,12 kN
- c. własny mieczy i kleszczy 0,15 x a = 0,53 kN
- c. własny słupka 0,15 x h1 = 0,57 kN
N1= 26,21 kN
Przyjęto przekrój b x h
b = 12 cm
h = 12 cm A = 144 cm2
Sprawdzenie naprężeń ściskających w słupku:
Dla przekroju prostokÄ…tnego i = 0,289 x h = 3,468 cm
·2 = 0,004  = h1/i = 109,57
ke = ( Ä„2 * Ek )/( fc,o,k * c 2 ) = 0,262
Z = [ 1 + (1+·2*c*(fc,o,d/fm,d))*ke] = 1,373
kw = 0,5 * (Z - Z2 - 4*ke ) = 0,229
Ãc = ( N / (A*kw) < fc,o,d * m m. = 1,00
Ãc = kN/cm2
0,797 kN/cm2 < fc,o,d * m = 1,255
Sprawdzenie naprężenia w podwalinie:
mm2
- powierzchnia docisku Ac = 2/3*Ad = 9600
- współczynnik zależny od długości docisku kc = 1,06 (l = 120 mm)
fc,90,d = 3,19 MPa
- naprężenia Ãc90 = N/Ac < kc fc,90,d m = 2,73 MPa < 3,38 MPa
2. Stropy nad Ip.
2.1 Strop nad salÄ… szkoleniowÄ… - 104.
Obciążenie:
- szlichta cem. 0,05*22,0*1,3= 1,43 kN/m2
- styropian twardy 0,20*1,2= 0,24 kN/m2
- ciężar własny stropu 3,15*1,1= 3,47 kN/m2
- tynk od spodu 0,015*19,0*1,3= 0,37 kN/m2
Zwoleń Bud PUP.xls Strona 4
- obciążenie użytkowe 1,2*1,4= 1,68 kN/m2
kN/m2
q2 = 7,19
Przyjęto strop żelbetowy gęstożebrowy na belkach kratownicowych Teriva 4,0/2
o wys. konstrukcyjnej stropu 30,0 cm i największym obciążeniu stropu ponad ciężar
własny na 1 m2 - 4,90 kN/m2. Rozpiętość do 8,0 m.
Rozstaw belek co 60,0 cm.
3,72 kN/m2 < 4,90 kN/m2
2.1.1 Belka żelbetowa pod więzbę dachową "BŻ-1".
h = 0,40 m; b=bw = 0,25 m.
Obciążenia :
Z dachu poz. 1.5 q*L*0,5 = 9,38 1,2 11,25
Płatwie + słupki 0,24 1,1 0,26
Belka b*h*25,0 = 2,50 1,1 2,75
Razem qch = 12,12 q = 14,26
[kN/m] [kN/m]
L
Głębok. podpory = 0,25 m. Ln = 6,36 m.
GÅ‚. oparcia na podporach ai = 0,5t = 0,125 m.
Rozpiętość efektywna belki Leff = Ln+2ai = 6,61 m leff = 6,61 m.
MEd =0,125xqxleff2 = 77,91 kNm
VEd =0,5xqxleff = 47,14 kN
Moment zginający od obciążenia obliczeniowego. : M Ed = 77,91 kNm
Minimalne otulenie prętów c min = 20,0 mm
Odchyłka : " c = 10,0 mm
Åšrednica strzemion: 6 mm
Średnica zbrojenia głównego: 18 mm
Odległość od krawędzi rozciąganej do środka ciężkości zbrojenia rozciąganego:
a1 = 45,0 mm
Klasa betonu: C20/25 fck = 20,0 MPa
fctm = 2,2 MPa
fcd = 13,3 MPa
fctd = 1,0 MPa
Gatunek stali: 34GS Klasa: A-III fyk = 410,0 MPa
fyd = 350,0 MPa
Moduł sprężystości podłużnej stali: Es = 200,0 GPa
Wysokość użyteczna: d = h - a1 d = 0,355 m
Granica zasięgu względnej wysokości strefy ściskanej:
¾eff, lim =0,8(3,5/(3,5+fyd/Es)) ¾eff,lim = 0,762
Moment naprężeń ściskanych względem zbrojenia rozciągającego:
µeff = M / fcd b d2 µeff = 1,86E-01
WzglÄ™dna wysokość strefy Å›ciskanej ¾eff =1 - "1-2µeff ¾eff = 2,1E-01
Rzeczywista wysokość strefy Å›ciskanej xeff = ¾eff d xeff = 7,4E-02 m
Przekrój pojedynczo zbrojony ¾eff < ¾eff,lim TAK
Wymagane pole przekroju zbrojenia
cm2
As1 = fcd b d ¾eff /fyd As1 = 7,00
Zbroj. przyjęte na dole: Asprov = 3 Ć 18 mm
cm2
As1prov = 7,62
As1prov > As1 TAK
cm2
Minimalne pole przekroju Asmin >0,26 fctm b d/ fyk = 1,24
As1,prov > AsminTAK
cm2
zbrojenia podłużnego: Asmin >0,0013 b d = 1,15
As1,prov > AsminTAK
Zbrojenie minimalne ze względu na ograniczenie szerokości rys do wartości :
Zwoleń Bud PUP.xls Strona 5
0,4 mm
kc = 0,4 przy samym zginaniu k = 1,0 dla środników < 300 mm
Ãs = 280 MPa
cm2
fct.eff = fctm Asmin = kc k fct,eff Act / Ãs = 1,77
As1,prov > AsminTAK
Á = 0,7 %
Ámax = 0,69 %
Åšcinanie
z = 0,9 d z = 0,3195 m
½ =
½ = 0,6(1-fck/250) 0,552
Współczynnik korekcyjny k = 1,6 - d > 1,0 1,048 TAK
StopieÅ„ zbrojenia podÅ‚użnego ÁL = As1/ bwd < 0,01 0,0079 TAK
Obliczeniowa noÅ›ność VRd1 = 0,35kfctd(1,2 + 40ÁL)bwd 49,33 kN
W strefie podpory skrajnej spełniony warunek VEd < VRd1 TAK
2.2 Strop nad pozostałymi pomieszczeniami.
Obciążenie:
- z dachu poz. 1.5 2,15 kN/m2
- szlichta cem. 0,05*22,0*1,3= 1,43 kN/m2
- styropian twardy 0,20*1,2= 0,24 kN/m2
- ciężar własny stropu 3,15*1,1= 3,47 kN/m2
- tynk od spodu 0,015*19,0*1,3= 0,37 kN/m2
- obciążenie użytkowe 0,5*1,4= 0,70 kN/m2
kN/m2
q2 = 8,35
Przyjęto strop żelbetowy gęstożebrowy na belkach kratownicowych Teriva 4,0/2
o wys. konstrukcyjnej stropu 30,0 cm i największym obciążeniu stropu ponad ciężar
własny na 1 m2 - 4,90 kN/m2. Rozpiętość do 8,0 m.
Rozstaw belek co 60,0 cm.
4,89 kN/m2 < 4,90 kN/m2
3. Wylewka stropowa z otworem wyłazowym na poddasze.
3.1 "WL - 1".
3.1.1 Płyta żelbetowa.
Obciążenia :
- szlichta bet. 0,05 x 22,0 = 1,10 x 1,1 = 1,21 kN/m2
- wypeł. styr. tward. 0,24 x 1,0 = 0,24 x 1,3 = 0,31 "
- ciężar własny płyty h x 24,0 = 1,20 x 1,1 = 1,32 "
- tynk od spodu 0,015 x 19,0 = 0,29 x 1,3 = 0,37 "
- obc. użytkowe 0,50 x 1,4 = 0,70 "
q = 3,91 kN/m2
L = 1,25 x 1,05 = 1,31 m.
M.= 0,125 x q x L2 = 0,84 kNm
Wymiarowanie :
m
Beton C 16/20, Stal A-O (StOS), b=1,0 m h= 0,05
ho= 0,03 m
z tb. odczyt. µ. =
A = M./bxho2= 936,10 0,511
cm2 przyjęto Ć 6 co
Fa = µ. x 100 x ho = 1,53 10,0 cm o Fa = 2,83 cm2
pręty rozdzielcze Ć 6 co 25,0 cm
3.1.2 Żebro żelbetowe.
Obciążenia:
- z poz. q x L x 0,5 = 2,45 kN/m.
- ciężar wł. żebra b x h x 24,0 x 1,1 = 1,35 "
q = 3,79 kN/m.
L1= 4,8 x 1,05 = 5,04 m.
M.= 0,125 x q x L12= 12,04 kNm R = 0,5 x q x L1 = 9,56 kN
Wymiarowanie:
Zwoleń Bud PUP.xls Strona 6
Beton C16/20, Stal A - III (34GS), b= 0,15 m.
h = 0,34 m. ho= 0,31 m.
z tb. odczyt. µ. =
A = M./b x ho2= 835,20 0,451
cm2 przyjęto 2 Ć 12
Ć
Ć
Ć
Fa =µ x 100 x b x ho = 2,10 o Fa = 2,26 cm2
przyjęto strzemiona Ć 6 co 25,5 cm
Åšcinanie:
Qmin = 0,75 x 750 x b x ho = 26,16 kN > R = 9,56 kN
strzemiona zagęścić konstrukcyjnie co 11,3 cm przy podporach
na odcinkach c = 96,0 cm
Ć 6 co 10 cm
2 Ć 12 2 Ć 12
2 Ć 12 2 Ć 12
2 Ć 12 2 Ć 12
2 Ć 12 2 Ć 12
34
34
34
34
5
5
5
5
2 Ć 12 2 Ć 12
2 Ć 12 2 Ć 12
2 Ć 12 2 Ć 12
2 Ć 12 2 Ć 12
b L b
4. Klatka schodowa.
4.1 PÅ‚yta biegowa. L1 = 3,0 m h1 = 0,11 m; n = 11
Przyjęto stopnie h = 15,9 cm b = 30,0 cm
o
Nachylenie biegu tg Ä… = h/b = 0,53 Ä… = 27,9 cos Ä… = 0,884
Zestawienie obciążeń :
- gres 0,01 x 25,0 x 1,1 = 0,28 kN/m2
kN/m2
- ciężar płyty h1*24,0*1,1/cosą = 3,29
- ciężar stopni h*0,5*24,0*1,1 = 2,10 kN/m2
- tynk cem - wap. 0,015*19,0*1,3/cosÄ… = 0,42 kN/m2
- obciąż. zmienne 4,0 *1,3 = 5,20 kN/m2
q = 11,28 kN/m2
L = L1*1,05 = 3,15 m.
M. = 0,125*q*L2 = 13,99 kNm
Wymiarowanie :
b = 1,0 m. ho = 0,09 m.
Beton C16/20; Stal - III /34GS/
µ. =
A = M./b*ho2 = 1727,22 z tb. odcz. 0,537
cm2
Fa = µ.*100*b*ho= 4,83
przyjęto Ć 10 co 15,0 cm o Fa = 5,23 cm2
pręty rozdzielcze Ć 6 co 25,0cm
30,0
Ć 10 co 15,0 cm
Ć
Ć
Ć
11,0
pręty rozdzielcze Ć 6 co 25,0cm
Ć
Ć
Ć
4.2 Płyta podestowa (spocznikowa)żelbetowa.
Obciążenia :
- gres 0,01 x 25,0 = 0,19 x 1,1 = 0,21 kN/m2
- ciężar własny płyty h x 24,0 = 1,44 x 1,1 = 1,58 "
- tynk od spodu 0,015 x 19,0 = 0,29 x 1,3 = 0,37 "
- obc. użytkowe 4,00 x 1,3 = 5,20 "
q = 7,36 kN/m2
L = 1,56 x 1,05 = 1,64 m.
15,9
Zwoleń Bud PUP.xls Strona 7
q
L
M.= 0,125 x q x L2 = 2,47 kNm
Wymiarowanie :
m
Beton C-16/20, Stal A-III (34GS), b = 1,0 m h = 0,060
ho = 0,04 m
z tb. odczyt. µ. =
A = M./bxho2= 1 543,48 0,479
cm2; przyjęto Ć 6 co 12,0 cm
Fa = µ. x 100 x ho = 1,92
o Fa = 2,36 cm2 pręty rozdzielcze Ć 6 co 25,0 cm
Ć 6 co 25,0 cm
Ć
Ć
Ć
6
Ć 6 co 12,0 cm
Ć
Ć
Ć
Belka podestowa
25 1,56
4.3 Belki podestowe. h = 0,30 m. b = 0,20 m.
Zestawienie obciążeń:
- z płyty biegowej q*L1*0,5= 16,92 kN/m.
- z płyty podestowej q*L1*0,5= 5,74 kN/m.
- c.wł. belki podestowej h*b*24,0*1,1= 1,58 kN/m.
18,50 kN/m.
L1 = 3,06 m.
L = L1*1,05 = 3,21 m.
M. = 0,125*q*L2 = 23,88 kNm R = 0,5*q*L = 29,73 kN
Wymiarowanie :
Beton C -16/ 20 Stal A - III ho = 0,28 m.
z tb.odczytujemy µ.=
A = M./b*ho2= 1522,80 0,471
Fa = µ."100*b*ho = 2,64 cm2 przyjÄ™to doÅ‚em 3 Ć 12 o Fa = 3,39 cm2
górą 2 Ć 10
przyjęto strzemiona Ć 6 co 22,5 cm
Åšcinanie:
Qmin = 0,75 x 750 x b x ho = 31,50 kN => R = 29,73 kN
strzemiona zagęścić konstrukcyjnie co 10,0 cm przy podporach
na odcinkach c = 61,2 cm
2 Ć
Ć 10
Ć
Ć
30
3 Ć 12
Ć
Ć
Ć
20
5.0 Nadproża żelbetowe.
5.1 Nadproże żelbetowa "NŻ-1" (belko-wieniec).
h = 0,40 m; b=bw = 0,25 m.
Obciążenia :
Zwoleń Bud PUP.xls Strona 8
Ze stropu nad Ip poz. 2.1 q*L*0,5 = 12,57 1,2 15,09
Schody poz. 4.1 7,05 1,2 8,46
Belka b*h*25,0 = 2,50 1,1 2,75
Razem qch = 22,12 q = 26,30
[kN/m] [kN/m]
L
Głębok. podpory = 0,25 m. Ln = 3,06 m.
GÅ‚. oparcia na podporach ai = 0,5t = 0,125 m.
Rozpiętość efektywna belki Leff = Ln+2ai = 3,31 m leff = 3,31 m.
MEd =0,125xqxleff2 = 36,02 kNm
VEd =0,5xqxleff = 43,53 kN
Moment zginający od obciążenia obliczeniowego. : M Ed = 36,02 kNm
Minimalne otulenie prętów c min = 20,0 mm
Odchyłka : " c = 10,0 mm
Åšrednica strzemion: 6 mm
Średnica zbrojenia głównego: 12 mm
Odległość od krawędzi rozciąganej do środka ciężkości zbrojenia rozciąganego:
a1 = 42,0 mm
Klasa betonu: C20/25 fck = 20,0 MPa
fctm = 2,2 MPa
fcd = 13,3 MPa
fctd = 1,0 MPa
Gatunek stali: 34GS Klasa: A-III fyk = 410,0 MPa
fyd = 350,0 MPa
Moduł sprężystości podłużnej stali: Es = 200,0 GPa
Wysokość użyteczna: d = h - a1 d = 0,358 m
Granica zasięgu względnej wysokości strefy ściskanej:
¾eff, lim =0,8(3,5/(3,5+fyd/Es)) ¾eff,lim = 0,762
Moment naprężeń ściskanych względem zbrojenia rozciągającego:
µeff = M / fcd b d2 µeff = 8,45E-02
WzglÄ™dna wysokość strefy Å›ciskanej ¾eff =1 - "1-2µeff ¾eff = 8,8E-02
Rzeczywista wysokość strefy Å›ciskanej xeff = ¾eff d xeff = 3,2E-02 m
Przekrój pojedynczo zbrojony ¾eff < ¾eff,lim TAK
Wymagane pole przekroju zbrojenia
cm2
As1 = fcd b d ¾eff /fyd As1 = 3,01
Zbroj. przyjęte na dole: Asprov = 3 Ć 12 mm
cm2
As1prov = 3,39
As1prov > As1 TAK
cm2
Minimalne pole przekroju Asmin >0,26 fctm b d/ fyk = 1,25
As1,prov > AsminTAK
cm2
zbrojenia podłużnego: Asmin >0,0013 b d = 1,16
As1,prov > AsminTAK
Zbrojenie minimalne ze względu na ograniczenie szerokości rys do wartości :
0,4 mm
kc = 0,4 przy samym zginaniu k = 1,0 dla środników < 300 mm
Ãs = 280 MPa
cm2
fct.eff = fctm Asmin = kc k fct,eff Act / Ãs = 1,77
As1,prov > AsminTAK
Á = 0,7 %
Ámax = 0,69 %
Åšcinanie
z = 0,9 d z = 0,3222 m
½ =
½ = 0,6(1-fck/250) 0,552
Zwoleń Bud PUP.xls Strona 9
Współczynnik korekcyjny k = 1,6 - d > 1,0 1,048 TAK
StopieÅ„ zbrojenia podÅ‚użnego ÁL = As1/ bwd < 0,01 0,0034 TAK
Obliczeniowa noÅ›ność VRd1 = 0,35kfctd(1,2 + 40ÁL)bwd 43,81 kN
W strefie podpory skrajnej spełniony warunek VEd < VRd1 TAK
5.2 Nadproże żelbetowa "NŻ-2".
h = 0,25 m; b=bw = 0,25 m.
Obciążenia :
Z dachu poz. 1.4.1 4,32 1,2 5,18
Åšcianka kolankowa 0,24*0,30*18,0 = 1,56 1,2 1,87
Wieniec 0,24*0,34*25,0 = 2,04 1,2 2,45
Nadproże b*h*25,0 = 1,56 1,1 1,72
Razem qch = 9,47 q = 11,21
[kN/m] [kN/m]
L
Głębok. podpory = 0,25 m. Ln = 3,60 m.
GÅ‚. oparcia na podporach ai = 0,5t = 0,125 m.
Rozpiętość efektywna belki Leff = Ln+2ai = 3,85 m leff = 3,85 m.
MEd =0,125xqxleff2 = 20,77 kNm
VEd =0,5xqxleff = 21,58 kN
Moment zginający od obciążenia obliczeniowego. : M Ed = 20,77 kNm
Minimalne otulenie prętów c min = 20,0 mm
Odchyłka : " c = 10,0 mm
Åšrednica strzemion: 6 mm
Średnica zbrojenia głównego: 12 mm
Odległość od krawędzi rozciąganej do środka ciężkości zbrojenia rozciąganego:
a1 = 42,0 mm
Klasa betonu: C20/25 fck = 20,0 MPa
fctm = 2,2 MPa
fcd = 13,3 MPa
fctd = 1,0 MPa
Gatunek stali: 34GS Klasa: A-III fyk = 410,0 MPa
fyd = 350,0 MPa
Moduł sprężystości podłużnej stali: Es = 200,0 GPa
Wysokość użyteczna: d = h - a1 d = 0,208 m
Granica zasięgu względnej wysokości strefy ściskanej:
¾eff, lim =0,8(3,5/(3,5+fyd/Es)) ¾eff,lim = 0,762
Moment naprężeń ściskanych względem zbrojenia rozciągającego:
µeff = M / fcd b d2 µeff = 1,44E-01
WzglÄ™dna wysokość strefy Å›ciskanej ¾eff =1 - "1-2µeff ¾eff = 1,6E-01
Rzeczywista wysokość strefy Å›ciskanej xeff = ¾eff d xeff = 3,3E-02 m
Przekrój pojedynczo zbrojony ¾eff < ¾eff,lim TAK
Wymagane pole przekroju zbrojenia
cm2
As1 = fcd b d ¾eff /fyd As1 = 3,10
Zbroj. przyjęte na dole: Asprov = 3 Ć 12 mm
cm2
As1prov = 3,39
As1prov > As1 TAK
cm2
Minimalne pole przekroju Asmin >0,26 fctm b d/ fyk = 0,73
As1,prov > AsminTAK
cm2
zbrojenia podłużnego: Asmin >0,0013 b d = 0,68
As1,prov > AsminTAK
Zbrojenie minimalne ze względu na ograniczenie szerokości rys do wartości :
0,4 mm
Zwoleń Bud PUP.xls Strona 10
kc = 0,4 przy samym zginaniu k = 1,0 dla środników < 300 mm
Ãs = 280 MPa
cm2
fct.eff = fctm Asmin = kc k fct,eff Act / Ãs = 1,77
As1,prov > AsminTAK
Á = 0,4 %
Ámax = 0,69 %
Åšcinanie
z = 0,9 d z = 0,1872 m
½ =
½ = 0,6(1-fck/250) 0,552
Współczynnik korekcyjny k = 1,6 - d > 1,0 1,048 TAK
StopieÅ„ zbrojenia podÅ‚użnego ÁL = As1/ bwd < 0,01 0,0060 TAK
Obliczeniowa noÅ›ność VRd1 = 0,35kfctd(1,2 + 40ÁL)bwd 27,43 kN
W strefie podpory skrajnej spełniony warunek VEd < VRd1 TAK
5.3 Nadproże żelbetowa "NŻ-3" (belko-wieniec).
h = 0,30 m; b=bw = 0,25 m.
Obciążenia :
Ze stropu nad Ip poz. 2.1 q*L*0,5 = 26,95 1,2 32,33
Belka b*h*25,0 = 1,88 1,1 2,06
Razem qch = 28,82 q = 34,40
[kN/m] [kN/m]
L
Głębok. podpory = 0,25 m. Ln = 1,89 m.
GÅ‚. oparcia na podporach ai = 0,5t = 0,125 m.
Rozpiętość efektywna belki Leff = Ln+2ai = 2,14 m leff = 2,14 m.
MEd =0,125xqxleff2 = 19,69 kNm
VEd =0,5xqxleff = 36,81 kN
Moment zginający od obciążenia obliczeniowego. : M Ed = 19,69 kNm
Minimalne otulenie prętów c min = 20,0 mm
Odchyłka : " c = 10,0 mm
Åšrednica strzemion: 6 mm
Średnica zbrojenia głównego: 12 mm
Odległość od krawędzi rozciąganej do środka ciężkości zbrojenia rozciąganego:
a1 = 42,0 mm
Klasa betonu: C20/25 fck = 20,0 MPa
fctm = 2,2 MPa
fcd = 13,3 MPa
fctd = 1,0 MPa
Gatunek stali: 34GS Klasa: A-III fyk = 410,0 MPa
fyd = 350,0 MPa
Moduł sprężystości podłużnej stali: Es = 200,0 GPa
Wysokość użyteczna: d = h - a1 d = 0,258 m
Granica zasięgu względnej wysokości strefy ściskanej:
¾eff, lim =0,8(3,5/(3,5+fyd/Es)) ¾eff,lim = 0,762
Moment naprężeń ściskanych względem zbrojenia rozciągającego:
µeff = M / fcd b d2 µeff = 8,90E-02
WzglÄ™dna wysokość strefy Å›ciskanej ¾eff =1 - "1-2µeff ¾eff = 9,3E-02
Rzeczywista wysokość strefy Å›ciskanej xeff = ¾eff d xeff = 2,4E-02 m
Przekrój pojedynczo zbrojony ¾eff < ¾eff,lim TAK
Wymagane pole przekroju zbrojenia
cm2
As1 = fcd b d ¾eff /fyd As1 = 2,29
Zbroj. przyjęte na dole: Asprov = 3 Ć 12 mm
cm2
As1prov = 3,39
Zwoleń Bud PUP.xls Strona 11
As1prov > As1 TAK
cm2
Minimalne pole przekroju Asmin >0,26 fctm b d/ fyk = 0,90
As1,prov > AsminTAK
cm2
zbrojenia podłużnego: Asmin >0,0013 b d = 0,84
As1,prov > AsminTAK
Zbrojenie minimalne ze względu na ograniczenie szerokości rys do wartości :
0,4 mm
kc = 0,4 przy samym zginaniu k = 1,0 dla środników < 300 mm
Ãs = 280 MPa
cm2
fct.eff = fctm Asmin = kc k fct,eff Act / Ãs = 1,77
As1,prov > AsminTAK
Á = 0,5 %
Ámax = 0,69 %
Åšcinanie
z = 0,9 d z = 0,2322 m
½ =
½ = 0,6(1-fck/250) 0,552
Współczynnik korekcyjny k = 1,6 - d > 1,0 1,048 TAK
StopieÅ„ zbrojenia podÅ‚użnego ÁL = As1/ bwd < 0,01 0,0035 TAK
Obliczeniowa noÅ›ność VRd1 = 0,35kfctd(1,2 + 40ÁL)bwd 31,75 kN
W strefie podpory skrajnej spełniony warunek VEd < VRd1 NIE
Należy w strefie ścinania odgiąć 1 pręt Ć 12..
5.4 Strop nad parterem.
Obciążenie:
- podłoga 1,0*1,2= 1,20 kN/m2
- ścianki działowe 0,75*1,1= 0,83 kN/m2
- strop 4,40 kN/m2
- tynk od spodu 0,37 kN/m2
- użytkowe 2,0*1,4= 2,80 kN/m2
kN/m2
q3 = 9,60
Z uwagi na powyższe strop pod salami sprzedaży należy przyjąć z Terivy 6,0
o wys. konstrukcyjnej stropu 34,0 cm i o największym obciążeniu stropu ponad ciężar
własny na 1,0 m2 - 11,92 kN/m2. Rozpiętość do 7,8 m.
Rozstaw belek co 45,0 cm.
5,196 kN/m2 < 11,92 kN/m2
5.5 Belko - wieniec "BW-1".
h = 0,30 m; b=bw = 0,25 m.
Obciążenia :
Åšciana Ip 0,26*3,1*9,0 = 7,25 1,2 8,70
Wieniec 0,24*0,34*25,0 = 2,04 1,2 2,45
Nadproże b*h*25,0 = 1,88 1,1 2,06
Razem qch = 11,17 q = 13,22
[kN/m] [kN/m]
L
Głębok. podpory = 0,25 m. Ln = 3,90 m.
GÅ‚. oparcia na podporach ai = 0,5t = 0,125 m.
Rozpiętość efektywna belki Leff = Ln+2ai = 4,15 m leff = 4,15 m.
MEd =0,125xqxleff2 = 28,45 kNm
VEd =0,5xqxleff = 27,42 kN
Moment zginający od obciążenia obliczeniowego. : M Ed = 28,45 kNm
Minimalne otulenie prętów c min = 20,0 mm
Odchyłka : " c = 10,0 mm
Åšrednica strzemion: 6 mm
Zwoleń Bud PUP.xls Strona 12
Średnica zbrojenia głównego: 12 mm
Odległość od krawędzi rozciąganej do środka ciężkości zbrojenia rozciąganego:
a1 = 42,0 mm
Klasa betonu: C20/25 fck = 20,0 MPa
fctm = 2,2 MPa
fcd = 13,3 MPa
fctd = 1,0 MPa
Gatunek stali: 34GS Klasa: A-III fyk = 410,0 MPa
fyd = 350,0 MPa
Moduł sprężystości podłużnej stali: Es = 200,0 GPa
Wysokość użyteczna: d = h - a1 d = 0,258 m
Granica zasięgu względnej wysokości strefy ściskanej:
¾eff, lim =0,8(3,5/(3,5+fyd/Es)) ¾eff,lim = 0,762
Moment naprężeń ściskanych względem zbrojenia rozciągającego:
µeff = M / fcd b d2 µeff = 1,29E-01
WzglÄ™dna wysokość strefy Å›ciskanej ¾eff =1 - "1-2µeff ¾eff = 1,4E-01
Rzeczywista wysokość strefy Å›ciskanej xeff = ¾eff d xeff = 3,6E-02 m
Przekrój pojedynczo zbrojony ¾eff < ¾eff,lim TAK
Wymagane pole przekroju zbrojenia
cm2
As1 = fcd b d ¾eff /fyd As1 = 3,38
Zbroj. przyjęte na dole: Asprov = 3 Ć 12 mm
cm2
As1prov = 3,39
As1prov > As1 TAK
cm2
Minimalne pole przekroju Asmin >0,26 fctm b d/ fyk = 0,90
As1,prov > AsminTAK
cm2
zbrojenia podłużnego: Asmin >0,0013 b d = 0,84
As1,prov > AsminTAK
Zbrojenie minimalne ze względu na ograniczenie szerokości rys do wartości :
0,4 mm
kc = 0,4 przy samym zginaniu k = 1,0 dla środników < 300 mm
Ãs = 280 MPa
cm2
fct.eff = fctm Asmin = kc k fct,eff Act / Ãs = 1,77
As1,prov > AsminTAK
Á = 0,5 %
Ámax = 0,69 %
Åšcinanie
z = 0,9 d z = 0,2322 m
½ =
½ = 0,6(1-fck/250) 0,552
Współczynnik korekcyjny k = 1,6 - d > 1,0 1,048 TAK
StopieÅ„ zbrojenia podÅ‚użnego ÁL = As1/ bwd < 0,01 0,0052 TAK
Obliczeniowa noÅ›ność VRd1 = 0,35kfctd(1,2 + 40ÁL)bwd 33,36 kN
W strefie podpory skrajnej spełniony warunek VEd < VRd1 TAK
5.6 Belko - wieniec "BW-2".
h = 0,30 m; b=bw = 0,25 m.
Obciążenia :
Åšciana Ip 0,26*3,1*9,0 = 7,25 1,2 8,70
Ze stropu poz. 5.4 10,08 1,2 12,09
Wieniec 0,24*0,34*25,0 = 2,04 1,2 2,45
Nadproże b*h*25,0 = 1,88 1,1 2,06
Razem qch = 21,24 q = 25,31
[kN/m] [kN/m]
L
Zwoleń Bud PUP.xls Strona 13
Głębok. podpory = 0,25 m. Ln = 1,90 m.
GÅ‚. oparcia na podporach ai = 0,5t = 0,125 m.
Rozpiętość efektywna belki Leff = Ln+2ai = 2,15 m leff = 2,15 m.
MEd =0,125xqxleff2 = 14,62 kNm
VEd =0,5xqxleff = 27,20 kN
Moment zginający od obciążenia obliczeniowego. : M Ed = 14,62 kNm
Minimalne otulenie prętów c min = 20,0 mm
Odchyłka : " c = 10,0 mm
Åšrednica strzemion: 6 mm
Średnica zbrojenia głównego: 12 mm
Odległość od krawędzi rozciąganej do środka ciężkości zbrojenia rozciąganego:
a1 = 42,0 mm
Klasa betonu: C20/25 fck = 20,0 MPa
fctm = 2,2 MPa
fcd = 13,3 MPa
fctd = 1,0 MPa
Gatunek stali: 34GS Klasa: A-III fyk = 410,0 MPa
fyd = 350,0 MPa
Moduł sprężystości podłużnej stali: Es = 200,0 GPa
Wysokość użyteczna: d = h - a1 d = 0,258 m
Granica zasięgu względnej wysokości strefy ściskanej:
¾eff, lim =0,8(3,5/(3,5+fyd/Es)) ¾eff,lim = 0,762
Moment naprężeń ściskanych względem zbrojenia rozciągającego:
µeff = M / fcd b d2 µeff = 6,61E-02
WzglÄ™dna wysokość strefy Å›ciskanej ¾eff =1 - "1-2µeff ¾eff = 6,8E-02
Rzeczywista wysokość strefy Å›ciskanej xeff = ¾eff d xeff = 1,8E-02 m
Przekrój pojedynczo zbrojony ¾eff < ¾eff,lim TAK
Wymagane pole przekroju zbrojenia
cm2
As1 = fcd b d ¾eff /fyd As1 = 1,68
Zbroj. przyjęte na dole: Asprov = 2 Ć 12 mm
cm2
As1prov = 2,26
As1prov > As1 TAK
cm2
Minimalne pole przekroju Asmin >0,26 fctm b d/ fyk = 0,90
As1,prov > AsminTAK
cm2
zbrojenia podłużnego: Asmin >0,0013 b d = 0,84
As1,prov > AsminTAK
Zbrojenie minimalne ze względu na ograniczenie szerokości rys do wartości :
0,4 mm
kc = 0,4 przy samym zginaniu k = 1,0 dla środników < 300 mm
Ãs = 280 MPa
cm2
fct.eff = fctm Asmin = kc k fct,eff Act / Ãs = 1,77
As1,prov > AsminTAK
Á = 0,5 %
Ámax = 0,69 %
Åšcinanie
z = 0,9 d z = 0,2322 m
½ =
½ = 0,6(1-fck/250) 0,552
Współczynnik korekcyjny k = 1,6 - d > 1,0 1,048 TAK
StopieÅ„ zbrojenia podÅ‚użnego ÁL = As1/ bwd < 0,01 0,0026 TAK
Obliczeniowa noÅ›ność VRd1 = 0,35kfctd(1,2 + 40ÁL)bwd 30,85 kN
W strefie podpory skrajnej spełniony warunek VEd < VRd1 TAK
5.7 SÅ‚upy betonowe "SAB - 1".
Obciążenie :
- z poz. 5.5 VEd = 27,4 kN
- z poz. 5.6 VEd = 27,2 kN
Zwoleń Bud PUP.xls Strona 14
- b2xlox24,0x1,1 = 6,9 kN
NSd = 61,6 kN
Obciążenie długotrwałe wynosi NSd,lt = 36,93 kN
Wysokość słupa : lo = 4,20 m
klt = 1 + 0,5*NSd,lt/NSd* Ć (Q, to) = 1,6
leff = lo klt = 5,31 m
Wstępnie założono Ś = 0,47
kN/m2
Beton C25/30 fcd*= 13,9 MPa = 13900
h = NSd/(Śąfcd*) = 0,065 m
Przyjęto wymiary słupa :
b = 0,25 m; h = 0,25 m
Mimiśród niezamierzony:
lcol/600 0,70 cm
ea = max h/300 = 0,833 cm
10 1,00 cm
ee = eo = 0,833 cm
eo/h = 0,033 leff/h = 21,251
przyjęto z tb 4.3 Ś = 0,47
Sprawdzenie nośności słupa:
NRd = Åš*fcd**b*h = 408,31 kN > NSd= 61,6 kN
Słup zosał prawidłowo zaprojektowany.
Z uwagi na warunki atmosferyczne słup należy zazbroić prętami 4 Ć 12 (34GS).
Ć
Ć
Ć
6. Fundamenty.
Wylewane z betonu żwirowego C16/20, zbrojone podłużnie 4Ć12(StOS).Strzemiona Ć 6
co 25,0 cm. Wysokość ław h = 30 cm.
Obliczenie jednostkowego oporu obliczeniowego podłoża wg. PN-81/B-03020
dla Å‚aw fundamentowych.
W otworach wiertniczych w poziomie posadowienia Å‚aw fundamentowych stwierdzono:
- piasek średni średnio zagęszczony (warstwa I}.
; Õr=
Dmin = 1 m.; JD= 0,40 31 x 0,9 = 27,9
Cur= 0,00 x 0,9 = 0,00 ; ND = 14,72
NC = 0,00
NB = 5,47
Ár= 2,0 x 0,9 = 1,8 t/m3 ; g = 9,81 m./s2 ; B/L = O ;
B = 0,6 m.
qf = (1+ 0,3 x B/L) x Nc x Cur +(1 + 1,5 x B/L) x ND x Dmin x Ár x g + (1 - 0,25 x B/L) x
x NB x B x Ár x g = 317,88 kPa
mqf = 0,9x0,9xqf = 257,48 kPa
- gliny średnio spoiste twardoplastyczne (warstwa III}.
; Õr=
Dmin = 1,00 m.; JL= 0,11 19 x 0,9 = 17,1
Cur= 40,0 x 0,9 = 36,0 ; ND = 4,77
NC = 12,34
NB = 0,86
Ár= 2,15 x 0,9 = 1,935 t/m3 ; g = 9,81 m./s2 ; B/L = O ;
B = 0,6 m.
qf = (1+ 0,3 x B/L) x Nc x Cur +(1 + 1,5 x B/L) x ND x Dmin x Ár x g + (1 - 0,25 x B/L) x
x NB x B x Ár x g = 544,58 kPa
mqf = 0,9x0,9xqf = 441,11 kPa do dalszych obliczeń przyjęto
mqf = 200,00 kPa
6.1 Aawa "A - 1" ( pod ścianę zewn. nośną); L = 6,60 m
Obciążenie:
- z dachu z poz. 1.5 q x 0,5 x L = 7,09 kN/m.
Zwoleń Bud PUP.xls Strona 15
- od stropu nad Ip z poz. 2,2 q x 0,5 x L = 23,71 kN/m.
- od stropu nad parterem z poz. 5.4 q x 0,5 x L = 31,67 kN/m.
- ściana Ip, parteru 0,25x(3,15+3,20)x18,0x1,1= 31,58 kN/m.
- tynk ściany 0,03x8,15x19,0x1,3= 6,04 kN/m.
- wieniec 2x0,25x0,24x24,0x1,1= 3,17 kN/m.
- ściana podziemia 0,24x1,3x22,0x1,1= 7,55 kN/m.
- ciężar ławy 0,3xbx24,0x1,1= 5,15 kN/m.
N = 115,95 kN/m.
Przyjęto szerokość ławy b = 0,65 m
à = N/1,0xb= 178,4 kPac
c
24
4 Ć 12
Ć 6 co 25 cm
30
10
b beton B-7,5MPa
6.2 Aawa "A - 2" ( pod ścianę zewn. nośną); L = 4,20 m
Obciążenie:
- z dachu z poz. 1.5 q x 0,5 x L = 4,51 kN/m.
- od stropu nad Ip z poz. 2,2 q x 0,5 x L = 15,09 kN/m.
- od stropu nad parterem z poz. 5.4 q x 0,5 x L = 20,15 kN/m.
- ściana Ip, parteru 0,25x(3,15+3,20)x18,0x1,1= 31,58 kN/m.
- tynk ściany 0,03x8,15x19,0x1,3= 6,04 kN/m.
- wieniec 2x0,25x0,24x24,0x1,1= 3,17 kN/m.
- ściana podziemia 0,24x1,3x22,0x1,1= 7,55 kN/m.
- ciężar ławy 0,3xbx24,0x1,1= 4,36 kN/m.
N = 92,45 kN/m.
Przyjęto szerokość ławy b = 0,55 m
à = N/1,0xb= 168,1 kPac
c
24
4 Ć 12
Ć 6 co 25 cm
30
10
b beton B-7,5MPa
6.3 Aawa "A - 3" (pod ścianę wewn. nośną); L = 6,6+4,8 = 11,4 m
Obciążenie:
- z dachu z poz. 1.5 q x 0,5 x L = 12,25 kN/m.
- od stropu nad Ip z poz. 2.2 q x 0,5 x L = 40,96 kN/m.
- od stropu nad parterem z poz. 5.4 q x 0,5 x L = 54,69 kN/m.
- ściana parteru i I p 0,25x6,4x18,0x1,1= 31,68 kN/m.
- tynk ściany 0,03x6,4x19,0x1,3= 4,74 kN/m.
- wieniec 2x0,25x0,24x24,0x1,1= 3,17 kN/m.
- ściana podziemia 0,24x1,3x22,0x1,1= 7,55 kN/m.
- ciężar ławy 0,3xbx24,0x1,1= 7,52 kN/m.
N = 162,56 kN/m.
Przyjęto szerokość ławy b = 0,95 m
à = N/1,0xb= 171,1 kPa Zwoleń Bud PUP.xls Strona 16
c
c
24
4 Ć 12
Ć 6 co 25 cm
30
10
b beton B-7,5MPa
6.4 Aawa "A - 4" (pod ścianę wewn. nośną); L = 4,2+4,8 = 9,00 m
Obciążenie:
- ze stropodachu z poz. 1.5 q x 0,5 x L = 9,67 kN/m.
- od stropu nad Ip z poz. 2.2 q x 0,5 x L = 32,33 kN/m.
- od stropu nad parterem z poz. 1.2 q3 x 0,5 x L = 43,18 kN/m.
- ściana parteru i Ip 0,25x6,4x18,0x1,1= 31,68 kN/m.
- tynk ściany 0,03x6,4x19,0x1,3= 4,74 kN/m.
- wieniec 2x0,25x0,24x24,0x1,1= 3,17 kN/m.
- ściana podziemia 0,24x1,9x22,0x1,1= 11,04 kN/m.
- ciężar ławy 0,3xbx24,0x1,1= 6,34 kN/m.
N = 142,14 kN/m.
Przyjęto szerokość ławy b = 0,80 m
à = N/1,0xb= 177,7 kPac
c
24
4 Ć 12
Ć 6 co 25 cm
30
10
b beton B-7,5MPa
6.5 Aawa "A - 5" (pod ściany zewn. nie obciążone stropami ).
Obciążenie:
- ściana parteru i I p 0,25x6,4x18,0x1,1= 31,68 kN/m.
- tynk ściany 0,03x6,4x19,0x1,3= 4,74 kN/m.
- wieniec 2x0,25x0,24x24,0x1,1= 3,17 kN/m.
- ściana podziemia 0,24x1,9x22,0x1,1= 11,04 kN/m.
- ciężar ławy 0,3xbx24,0x1,1= 2,38 kN/m.
N = 53,00 kN/m.
Przyjęto szerokość ławy b = 0,30 m
à = N/1,0xb= 176,7 kPa b
c
c
4 Ć 12
24
Ć 6 co 25 cm
30
beton B-7,5MPa
10
B. Budynek istniejÄ…cy.
1. WiÄ…zar drewniany.
Patrz pkt 1 w części A.
2. Strop nad Ip.
Patrz pkt 2 w części A.
3. Strop nad parterem.
Patrz pkt 5.4 w części A.
Zwoleń Bud PUP.xls Strona 17
3.1 "WL - 1".
3.1.1 Płyta żelbetowa.
Obciążenia :
- z dachu poz. 1.5 a 1,52 2,15 kN/m2
- wypeł. gruzobet. 0,28 x 18,0 = 5,04 x 1,3 = 6,55 "
- ciężar własny płyty h x 24,0 = 1,44 x 1,1 = 1,58 "
- tynk od spodu 0,015 x 19,0 = 0,29 x 1,3 = 0,37 "
- obc. użytkowe 1,20 x 1,4 = 1,68 "
q = 12,33 kN/m2
L = 1,08 x 1,05 = 1,13 m.
M.= 0,125 x q x L2 = 1,98 kNm
Wymiarowanie :
m
Beton C16/20, Stal A-O (StOS), b=1,0 m h= 0,06
ho= 0,045 m
z tb. odczyt. µ. =
A = M./bxho2= 979,14 0,534
cm2 przyjęto Ć
Ć 6 co
Ć
Ć
Fa = µ. x 100 x ho = 2,40 10,0 cm o Fa = 2,83 cm2
pręty rozdzielcze Ć
Ć 6 co 25,0 cm
Ć
Ć
3.1.2 Żebro żelbetowe.
Obciążenia:
- z poz. q x L x 0,5 = 6,66 kN/m.
- ciężar wł. żebra b x h x 24,0 x 1,1 = 1,35 "
q = 8,01 kN/m.
L1= 4,31 x 1,05 = 4,53 m.
M.= 0,125 x q x L12= 20,50 kNm R = 0,5 x q x L1 = 18,12 kN
Wymiarowanie:
Beton C16/20, Stal A - III (34GS), b= 0,15 m.
h = 0,34 m. ho= 0,32 m.
z tb. odczyt. µ. =
A = M./b x ho2= 1334,55 0,404
cm2 przyj.
Fa =µ x 100 x b x ho = 1,94 2 Ć 12 ż Fa = 2,26 cm2
2 Ć 12
2 Ć 12
2 Ć 12
przyjęto strzemiona Ć 6 co 25,5 cm
Åšcinanie:
Qmin = 0,75 x 750 x b x ho = 27,00 kN > R = 18,12 kN
strzemiona zagęścić konstrukcyjnie co 11,3 cm przy podporach
na odcinkach c = 86,2 cm
Ć 6 co 12 cm
2 Ć 10 2 Ć 10
28
34
2 Ć 12 6 2 Ć 12
b L b
4. Nadproże stalowe nad otworem. L = 1,50 m.
Rozpiętość obliczeniowa nadproża:
Lo = 1,05 * L = 1,575 m.
Wysokość trójkąta obciążenia utworzonego nad nadprożem:
H = 0,5 * Lo * p3 = 1,3640 m.
Zestawienie obciążeń:
- ciężar nadproża G x 1,1 = 0,29 kN/m.
- -"- stropu 8,4 x L1 = 28,98 kN/m.
L1 = 3,45 m. q1 = 29,27 kN/m.
- -"- muru 0,25 x H x 18,0 x 1,1 = q2 = 6,75 kN/m.
q = 36,03 kN/m.
Momenty:
M1 = 0,125 x q1 x L02 = 9,08 kNm
Zwoleń Bud PUP.xls Strona 18
M2 = q2 x Lo2 : 12 = 1,40 kNm; M.= M1+ M2 = 10,47 kNm
Siła poprzeczna:
Q = 0,5 x q1 x Lo + 0,25 x q2 x Lo = 25,71 kN
Sprawdzenie naprężeń:
kN/cm2
przyjęto 2 [ 120 o Wx = 2 x Wx= 121,4 cm3; Stal St3S; fd= 21,5
cm4; G =
Jx = 2 x Jx = 728 2 x G = 0,268 kN/m.
Ä…p= 1 MR = Ä…pWfd = 2610,1 kNcm = 26,101 kNm
M./ÕLMR < 1 ; ÕL = 1
M./ÕLMR = 0,40 < 1
Ugięcie:
fdop = 1 x L/500 = 0,30 cm
fn = 5/384 x q L4/ E Jx = 0,16 cm < fdop= 0,30 cm
5. Płyta żelbetowa (włazowa do piwnicy).
Schemat płyty przyjęty do obliczeń.
y
x lx = 1,00
ly = 1,00
Zestawienie obciążeń:
- haki montażowe 0,08 x 1,3 = 0,10 kN/m2
- płyta żelbetowa h*24,0*1,1 = 1,06 kN/m2
g = 1,16 kN/m2
- obc. zmienne p*1,2 = p = 2,40 kN/m2
q = 3,56 kN/m2
p = 2,00 kN/m2
ly/lx = 1 Õx = 0,0365 Õy = 0,0355 k = 0,500
Mx = Õxqlx2 = 0,12994 kNm My = Õyqly2 = 0,13 kNm
kN/m2 kN/m2
qx = kq = 1,78 qy = (1-k)q = 1,78
Wymiarowanie:
Beton C-16/20; Stal A-O; h =
4,0 cm; hoy = 2,0 cm
hox = 1,0 cm; b = 100,00 cm
z tb. odczyt. µ. =
Ax = Mx/bxhox2= 1 299,40 0,730
cm2 przyjęto Ć 6 co
Ć 6
Ć 6
Ć 6
Fax = µ. x 100 x hox = 0,73 25,0 cm o Fa = 1,13 cm2
z tb. odczyt. µ. =
Ay = My/bxhoy2= 315,95 0,240
cm2 przyjęto Ć 6 co
Ć 6
Ć 6
Ć 6
Fay = µ. x 100 x hoy = 0,48 25,0 cm o Fa = 1,13 cm2
Obliczenia wykonał:


Wyszukiwarka

Podobne podstrony:
Obl statyczne schody płytowe
obl ramy statycznie niewyznaczalnej
32 Wyznaczanie modułu piezoelektrycznego d metodą statyczną
obl 1 gabaryty
12 obl 4 krocce
14 obl 5b dno plas
linie wpływowe w układach statycznie wyznaczalnych belka
Temat 1 Krzywe belki statycznie wyznaczalne zadania
Cw 1 charakterystyki statyczne PM S
obl 5a dno sfer
Reakcje podporowe kratownicy statycznie wyznaczalnej
Skręcanie pręta zadanie statycznie wyznaczalne
Dla podanej belki statycznie niewyznaczalnej wyznaczyć linie wpływu
Linie wplywowe w ukladach statycznie wyznaczalnych kratownica2
5c 6 2 2 5 Lab Konfiguracja statycznych oraz domyślnych tras rutingu IPVv4
Obliczenia statyczne dachu płatwiowo klaeszczowego

więcej podobnych podstron