fiza egzam


    1. Sformułować ogólną zasadę zachowania energii

Suma energii kinetycznej, potencjalnej, cieplnej i innych energii, w układzie zamkniętym jest zawsze stała.

Ek = Ep + Q +  =0. Z tego prawa wynika, że energia może być przetwarzana z jednej energii na drugą, ale nie może powstawać z niczego i nie może ulec zniszczeniu.

    1. Zdefiniować pojęcie siły zachowawczej i nie zachowawczej

Siła zachowawcza to taka siła, dla której praca wykonywana podczas przemieszczania ciała po dowolnej drodze zamkniętej jest równa zeru (np. siła grawitacji, oddziaływania elektrostatycznego, sprężystości)

Siła nie zachowawcza występuje wówczas jeżeli praca wykonana przez tę siłę podczas przemieszczania ciała po dowolnej drodze jest różna od zera (np. siła tarcia, siła oporu)

Równoważne definicje:

Siłę nazywamy zachowawczą, jeżeli praca wykonana przez nią podczas ruchu między dwoma punktami zależy tylko od tych punktów, a nie od drogi łączącej te punkty.

Siłę nazywamy nie zachowawczą, jeżeli praca wykonana przez nią podczas ruchu ciała między dwoma punktami zależy od drogi łączącej te punkty.

    1. Sformułować zasadę zachowania pędu dla układu punktów materialnych

0x08 graphic
0x08 graphic
Kiedy suma sił zewnętrznych działających na układ punktów materialnych wynosi zero, to całkowity pęd układu pozostaje stały. Całkowity pęd układu może być zmieniony tylko przez siły zewnętrzne działające na układ. Siły wewnętrzne będące równymi i przeciwnie skierowanymi wytwarzają równe i przeciwnie skierowane zmiany pędu, które nawzajem się redukują. Pędy poszczególnych punktów układu mogą ulegać zmianom, ale suma tych pędów jest stała, jeżeli na układ nie działają żadne siły zewnętrzne:

    1. Sformułować zasadę zachowania momentu pędu dla bryły sztywnej

Gdy wypadkowy moment sił zewnętrznych działających na bryłę sztywną wynosi 0 to całkowity moment pędu bryły pozostaje stały. 0x01 graphic

    1. Sformułować zasadę zachowania momentu pędu dla układu punktów materialnych

Gdy wypadkowy moment sił zewnętrznych działających na układ punktów materialnych wynosi zero, to całkowity moment pędu układu pozostaje stały. 0x01 graphic
0x01 graphic
Oznacza to, że momenty sił poszczególnych punktów materialnych mogą się zmieniać, lecz ich suma pozostaje stała, gdy wypadkowy moment sił zewnętrznych równa się zero.

    1. Zdefiniować pojęcie środka masy dla układu punktów materialnych

Środkiem masy układu N punktów materialnych nazywamy punkt S, gdy jego współrzędne w przestrzeni wynoszą: 0x01 graphic
0x01 graphic
0x01 graphic

    1. Podać ogólną definicję momentu bezwładności ciała i prawo Steinera

I - moment bezwładności ciała względem osi obrotu

0x01 graphic
gdzie r oznacza odległość elementu masy dm od osi obrotu

dm = ρdv = ρdxdydz 0x01 graphic
Jeżeli oznaczymy przez I0 moment bezwładności ciała względem osi 00' przechodzącej przez środek masy, to moment bezwładności ciała względem dowolnej osi AA' równoległej do osi przechodzącej przez środek masy leżącej w tej samej płaszczyźnie: I=I0+ma2, gdzie a jest odległością między osiami. Zależność ta nosi nazwę twierdzenia Steinera.

    1. Sformułować II zasadę dynamiki Newtona dla ruchu obrotowego

0x01 graphic
Analogicznie dla ruchu postępowego, gdzie F()=ma()

2.1 Podać dokładną definicję ruchu harmonicznego prostego i jego równanie różniczkowe

Ruch harmoniczny prosty to taki, w którym siła jest wprost proporcjonalna do wychylenia. F()= - k x() Znak minus oznacza, że siła jest zawsze skierowana przeciwnie do wychylenia, czyli jest zawsze skierowana do położenia równowagi. Równanie różniczkowe ruchu harmonicznego prostego: 0x01 graphic

2.2 Podać równanie różniczkowe ruchu harmonicznego prostego i jego rozwiązanie, warunek rozw.

0x01 graphic
Jego rozwiązanie: x = A cos (t+ t). Warunek rozw: 2 = k / m

2.3 Podać równanie różniczkowe ruchu harmonicznego tłumionego, jego rozwiązanie i wykres amplitudy w funkcji czasu Równanie: 0x01 graphic
gdzie  -częstotliwość własna drogi ruchu oscylatora nietłumionego

 - stała tłumienia. Rozwiązanie: 0x01 graphic
(wykres!! A(t) )

2.4 Zdefiniować wahadło matematyczne i podać kiedy jest ono przykładem ruchu harmonicznego prostego

Wahadło matematyczne jest to wyidealizowane ciało o masie punktowej, zawieszone na cienkiej nierozciągliwej nici. Wytrącone z położenia równowagi waha się w płaszczyźnie pionowej pod wpływem siły ciężkości. Ruch wahadła powoduje siła styczna: F= - mg sin  . Jeżeli jednak założymy, że kąt odchylenia  jest mały, to sin  jest bardzo bliski  mierzonemu w radianach i dla małych nachyleń mamy do czynienia z oscylatorem harmonicznym prostym. Otrzymujemy zatem: 0x01 graphic

2.5 Przedstawić zasadę zachowania energii w ruchu harmonicznym (wzór i wykres)

E = K + U = ½ kA2 = Kmax + Umin = Kmin + Umax

(en. Kinetyczna): 0x01 graphic

(en. Potencjalna) 0x01 graphic

2.6 Na czym polega zjawisko rezonansu mechanicznego

Zjawisko rezonansu mechanicznego występuje wówczas gdy dla charakterystycznej wartości częstotliwości amplituda oscylacji osiąga wartość maksymalną. Częstotliwość rezonansowa: 0x01 graphic
.

Wychylenie podczas rezonansu: 0x01 graphic
Mamy drganie wymuszone dane równaniem różniczkowym: 0x01 graphic
którego rozwiązaniem jest x = x0 cos (t + ), gdy  = Rez to x0 = x0Rez , a przy tłumieniu  = 0 wartość amplitudy x0() dąży do nieskończoności.

2.7 Na czym polega ruch falowy

Ruch falowy polega na przemieszczaniu się zaburzenia w ośrodku ciągłym. W tym czasie sam ośrodek jako całość nie porusza się wraz z rozchodzącą się falą. Wspólną cechą wszystkich zjawisk falowych jest zdolność do przenoszenia energii, przy czym dany rodzaj energii zmienia się periodycznie w sposób ciągły. W ruchu falowym zatem transportowi energii nie towarzyszy transport materii. Przykłady: 1o fale powierzchniowe (powstające na pow. cieczy lub ciała stałego polegające na wychylaniu się cząsteczek z położenia równowagi) 2o fale głosowe (powstające w ciałach stałych, cieczach i gazach, polegające na powstawaniu na przemian ciśnień i podciśnień) 3o fale elektromagnetyczne (mogące rozchodzić się w przestrzeni pozbawionej materii i polegające na zmianie pola elektrycznego na pole magnetyczne i odwrotnie)

2.8 Na czym polega zjawisko interferencji fal. Kiedy fala wypadkowa jest wzmocniona a kiedy osłabiona

Interferencją fal nazywamy wszystkie zjawiska, które są wywołane przez niez...ne nakładanie się fal. Jeżeli do dowolnego punktu ośrodka dociera w tym samym momencie kilka ciągów fal to punkt ten doznaje wychylenia będącego sumą poszczególnych wychyleń, wywołanych przez dochodzące do punktu ciągi fal. Kiedy ciąg fal rozchodzi się w przestrzeni tak, jak gdyby nie było innych ciągów fal.

Mamy 2 ciągi fal mające te same amplitudy i częstotliwości, różniące się fazami i rozchodzące się w tym samym kierunku: y1 = A cos (t - x1/v), y2 = A cos (t - x2/v). Amplituda fali wypadkowej y = y1 + y2 przyjmuje postać: 0x01 graphic
Amplituda B przyjmie wartość maksymalną równą 2A gdy różnica dróg interferujących fal jest wielokrotnością długości fali x2- x1 = 4 (wzmocnienie fali wypadkowej - fale spotykają się w zgodnych fazach) Amplituda B przyjmie wartość minimalną równą zeru, gdy różnica dróg jest nieparzystą wielokrotnością połowy długości fali x2 - x1 = (2n + 1) /2 (osłabienie fali wypadkowej - fale spotykają się w przeciwnych fazach)

3.1 Sformułować założenia transformacji Lorenza

Nie istnieje jednoczesność zdarzeń (czyli czas nie jest absolutny)

Długość dowolnego odcinka w różnych układach odniesienia nie jest taka sama

Prędkość światła jest stała

3.2 Sformułować wnioski wynikające z transformacji Lorenza

1o prędkość światła jest stałą wielkością, niezmienną względem transformacji Lorenza

2o Istnieje czterowymiarowa przestrzeń - czasoprzestrzeń (x, y, z, t)

3o t1 = t2; t1' =/= t2' ; x1 =/= x2 ; x1' =/= x2' Jednoczesność zjawisk w jednym układzie nie jest równoznaczna z jednoznacznością tych zjawisk w innym układzie

4o Czas w układzie ruchowym upływa wolniej niż w układzie nieruchomym (np. cząstka elementarna w ruchu żyje dłużej niż w spoczynku) t' > t - „wydłużenie” czasu tzn. „paradoks bliźniąt”

5o Ciało ma największą długość w układzie, w którym spoczywa x' < x - „skracanie drogi”

3.3 Przedstawić zależność masy i pędu cząstki relatywistycznej w funkcji jej prędkości

3.4 Przedstawić zależność energii cząstki relatywistycznej w funkcji jej prędkości

3.5 Sformułować zasadę zachowania energii cząstki relatywistycznej będącej w ruchu

0x08 graphic

E oznacza całkowitą energię ciała poruszającego się z prędkością v=/=0 w polu sił potencjalnych U. Dla równych v E=mc2+1m0v2 + U

3.6 Sformułować zasadę zachowania energii cząstki relatywistycznej będącej w spoczynku

E=m0c2 + U Jeżeli ciało jest w spoczynku, to obok energii potencjalnej U przypisuje się mu dodatkową ilość energii m0c2, zwaną energią spoczynkową.

3.7 Sformułować zasadę równoważności masy i energii

Związek ten przedstawia zasadę równoważności masy i energii, w której masie m przypisuje się energię i energii przypisuje się masę, zatem energia i masa są równoważne. Związek nosi również często nazwę ogólnego prawa zachowania energii.

0x08 graphic
Każda zmiana energii ciała E sprowadza się do zmiany masy 0x08 graphic
i na odwrót każda zmiana masy relatywistycznej mr powoduje zmianę energii ciała

3.8 Sformułować zasadę zachowania masy

Masa całkowita ciała jest sumą masy spoczynkowej, masy równoważnej energii kinetycznej i masy równoważnej energii potencjalnej. m = m0 + mk + mp = const m = E/c2 = m0 + 1/c2 (1/2 m0 v2 + 3/8 m0 v4 / c2 +...) + U/c2

4.1 Przedstawić założenia teorii kinetyczno-molekularnej gazu

Jeżeli gęstości gazów nie są zbyt duże, to wszystkie gazy zachowują się bardzo podobnie. A zatem, jeżeli temperatury gazów nie są zbyt niskie, a ciśnienie zbyt wysokie, to wszystkie gazy rzeczywiste zachowują się analogicznie. Te obserwacje spowodowały wprowadzenie pojęcia gazu doskonałego. Gaz doskonały to taki gaz , który z mikroskopowego punktu widzenia spełnia następujące założenia:

1o Gaz s...ża się z cząsteczek jedno lub wieloatomowych, które możemy także uważać za punkty materialne

2o Cząsteczki gazu znajdują się w ciągłym ruchu i podlegają zasadom ruchu Newtona, poruszają się chaotycznie z różnymi prędkościami i w różnych kierunkach

3o Całkowita liczba cząsteczek gazu jest olbrzymia, kierunki i prędkości cząsteczek mogą się gwałtownie zmieniać w wyniku zderzeń ze ścianami naczynia i z innymi cząsteczkami, co nie zmienia jednak ogólnego rozkładu prędkości cząsteczek

4o Objętość samych cząsteczek jest b. mała w porównaniu z objętością zajmowaną przez gaz(Vdrobin << Vnaczynia)

5o Między cząsteczkami nie działają żadne siły, poza momentem zderzeń

6o Zderzenia cząsteczek są doskonale sprężyste i czas zderzeń jest bardzo krótki, więc może być pominięty.

4.2 Zdefiniować pojęcie temperatury gazu oraz cząstki w ujęciu kinetyczno-molekularnym

Przez temperaturę gazu rozumiemy średnią energię kinetyczną cząsteczek gazu w ich chaotycznym ruchu postępowym

EK gazu = 3/2 RT ; R = 8,314 [ I / mol*K]. Podobny wzór dla jednej cząsteczki: EK cząst = 3/2 kT gdzie k = R/N1 = 1,38 * 10-23 [ I/ cząst * K]

4.3 Napisać i wyjaśnić równanie opisujące stan n moli gazu doskonałego

pV = n R T gdzie: n - liczba moli, n = M /  (m - masa gazu; - ciężar cząsteczkowy), n = N / NA (N - liczba cząstek, NA - liczba Avogadro)

pV - ten iloczyn to praca wykonana nad gazem przy zmianie jego objętości

Ciśnienie jest w stałej temperaturze odwrotnie proporcjonalne do objętości

Iloczyn ciśnienia i objętości gazu jest proporcjonalny do temperatury pV ~ T

4.4 Jaki jest sens fizyczny średniej drogi swobodnej

0x01 graphic
Średnia droga swobodna cząsteczek w gazie jest prawdziwą miarą próżni uzyskanej w danej objętości, ponieważ określa wielkość drogi, na której zachodzą zdarzenia.

Drogą swobodną nazywamy drogę przebytą przez cząsteczkę między kolejnymi uderzeniami. Z kolei średnią drogę swobodną nazywamy średnią odległość między kolejnymi zderzeniami.

4.5 Zdefiniować pojęcie stopnia swobody cząsteczki i zasadę ekwipartycji energii

Stopień swobody f to każdy z niezależnych sposobów pochłaniania energii.

Dostępna energia kinetyczna rozłożona jest tak, że na każdy z niezależnych sposobów energii przypada ta sama równa część energii E = f/2 RT (2 rysunki)

4.6 Zdefiniować pojęcie dipola elektrycznego i jego zachowanie się w polu elektrycznym

Dipolem elektrycznym nazywamy układ dwóch ładunków +q i - q o równych wartościach bezwzględnych, oddalonych od siebie na odległość x. (rysunek) 0x01 graphic

W jednorodnym zewnętrznym polu elektrycznym o natężeniu E, które tworzy z momentem dipolowym kąt , na dipol działają siły F i -F skierowane przeciwnie. Siła wypadkowa jest równa zeru, natomiast istnieje różny od zera wypadkowy moment obracający dipol elektryczny wokół środka odcinka 2a.

Moment skręcający dipol elektryczny: M() = p() x E() M= pe sin

4.7 Zdefiniować pole elektryczne i podać wielkości opisujące to pole

Punktowy ładunek elektryczny wytwarza w przestrzeni pole, zwane polem elektrycznym. Jest ono rozumiane w następujący sposób: ładunek q wytwarza wokół siebie pole elektryczne, pole to oddziałuje na ładunek q0 będący w jego zasięgu, w wyniku tego pojawia się siła oddziaływania F(). Wartość siły oddziaływania określa prawo Culomba: 0x01 graphic
gdzie r() - wektor jednostkowy odległości pomiędzy ładunkami, 0 - bezwzględna przenikalność elektryczna próżni = 8,85 * 10 -12 [C2 / Nm2] 0x01 graphic
. Wartość natężenia pola elektrycznego określa definicja: 0x01 graphic
, wektor E() jest skierowany wzdłuż linii sił pola elektrycznego od ładunku +q do - q. Energia potencjalna: 0x01 graphic
Potencjał pola: VE = UE /q0 ; 0x01 graphic

Praca: WE = UE = q0 VE

4.8 Zdefiniować strumień pola elektrycznego i prawo Gaussa, podać sens fizyczny powierzchni Gaussa

0x01 graphic
We wzorze tym tak zdefiniowaną powierzchnię nazywamy powierzchnią Gaussa. Związek pomiędzy strumieniem pola elektrycznego przechodzącego przez dowolną powierzchnię zamkniętą a ładunkiem zamkniętym w jej wnętrzu podaje prawo Gaussa: 0x01 graphic

5.1 Podać i wyjaśnić związek pomiędzy opisem wektorowym i opisem skalowym pola elektrycznego

E() = - grad V, 0x01 graphic
Składowa pola E () jest równa gradientowi potencjału ze znakiem minus. Znak minus oznacza, że kierunek pola elektrycznego jest skierowany w stronę zmniejszającego się potencjału. Jeżeli wprowadzimy układ kartezjański x , y ,z to możemy napisać trzy składowe wektora pole E w dowolnym punkcie.

5.2 Kiedy powstaje ładunek indukowany w dielektryku i co on powoduje

Ładunek indukowany w dielektryku powstaje gdy umieścimy go w polu elektrycznym. W wyniku przyłożenia zewnętrznego, jednorodnego pola elektrycznego E0() do dielektryka następuje w dielektryku rozsunięcie ładunków ujemnych i dodatnich. Dielektryk staje się częściowo spolaryzowany, chociaż jako całość dielektryk pozostaje elektrycznie obojętny. Zatem dodatni indukowany ładunek powierzchniowy musi równać się liczbowo ujemnemu. Indukowane ładunki powierzchniowe wytwarzają indukowane pole elektryczne E(), które przeciwdziała polu zewnętrznemu E0(). Pole wypadkowe E() jest sumą wektorową obu pól. Pole wypadkowe E() jest zgodne co do kierunku z polem zewn. E0(), ale jest od niego mniejsze o wartość |E()|. Zatem jeżeli umieścimy ładunki w zewnętrznym polu elektrycznym, to powstające indukowane ładunki powierzchniowe powodują osłabienie pola pierwotnego wewnątrz dielektryka (rysunek)

5.3. Zdefiniować ogólne Prawo Gaussa dla dielektryków

0x08 graphic
0x08 graphic
0x01 graphic
gdzie: D - wektor przesunięcia elektrostatycznego, indukcji elektrostatycznej

g - ładunek swobodny zamknięty przez pow Gaussa

5.4. Zdefiniować wektory D, P, E dla dielektryka umieszczonego w zew polu elektrycznym

0x01 graphic
- wektor indukcji elektrostatycznej wiąże się z ładunkiem całkowitym linie sił pola pochodzące od tego ładunku istnieją zarówno w dielektryku jak i w szczelinie powietrznej kondensatora 0x01 graphic
gdzie q - ładunek zew s - powierzchnia

0x01 graphic
- Wektor polaryzacji elektrycznej o kierunku od ujemnego do dodatniego indukowanego ładunku powierzchniowego, wiąże się z ładunkiem indukowanym linie sił pochodzące od tego ładunku istnieją tylko w dielektryku 0x01 graphic
gdzie q - ładunek indukowany s - powierzchnia

0x01 graphic
- wektor natężenia pola elektrycznego w dielektryku związany jest z ładunkiem istniejącym na okładkach kondensatora 0x01 graphic
gdzie q - ładunek zew s - powierzchnia 0x01 graphic
0x01 graphic

5.5. Zdefiniować pole magnetyczne i sformułować prawo Ampera

Pole magnetyczne jest to przestrzeń otaczająca magnes albo przewodnik z prądem. Jest polem wektorowym. W pkt P występuje pole magnetyczne o indukcji 0x01 graphic
jeżeli na ładunek próbny q poruszający się prostopadle do kierunku tego pola działa siła 0x01 graphic
Prawo Ampera 0x01 graphic
gdzie i - natężenie pola, B - wektor indukcji, 0x01 graphic
- przenikalność magnetyczna próżni

5.6. Kiedy kierunek ruchu ładunku elektrycznego znajdującego się jednocześnie w polu elektrycznym i magnetycznym będzie linią prosta

Jeżeli pole elektryczne i magnetyczne działają jednocześnie i 0x01 graphic
to naładowana cząsteczka nie będzie zmieniała kierunku ruchu gdy 0x01 graphic
co daje zależność pomiędzy polem magnetycznym i elektrycznym w postaci 0x01 graphic

5.7.Napisać wnioski wynikające z układu równań Maxwella

5.8. Dlaczego układ równań Maxwella dla próżni jest układem symetrycznym względem wektora E i B

W prózni nie ma ani ładunków elektrycznych ani prądu przewodzenia q= 0, i= 0

0x01 graphic
0x01 graphic
0x01 graphic
0x01 graphic

6.1. Podać podstawowe prawa optyki geometrycznej

6.2. Jakie musza być spełnione warunki aby dwie fale świetlne mogły ze sobą interferować

6.3. Jaka jest różnica pomiędzy zjawiskiem interferencji i dyfrakcji światła

O interferencji mówimy gdy światło pochodzi ze skończonej liczby elementarnych źródeł światła. O dyfrakcji mówimy gdy światło pochodzi z nieskończonej liczby elementarnych źródeł światła (z różnych miejsc jednej szczeliny )

6.4. Jak można wyznaczyć stałą siatki dyfrakcyjnej: d - stała siatki dyfrakcyjnej (odległość szczelina - szczelina), możemy wyznaczyć ją doświadczalnie korzystając ze wzoru 0x01 graphic
gdzie d - stała siatki dyfrakcyjnej, alfa - kąt ugięcia 0x01 graphic

6.5. Na czym polega zjawisko polaryzacji światła - polaryzacja światła polega na uporządkowaniu kierunków drgań wektorów pola elektrycznego E pola magnetycznego B. Dla wszystkich pkt fali drgający wektor elektryczny E leżący w płaszczyźnie XZ tworzy z kierunkiem ruch fali płaszczyznę zwaną płaszczyzną drgań, a płaszczyzna drgań wektora magnetycznego B który leży w płaszczyźnie YZ nazywa się płaszczyzna polaryzacji. Kierunek osi Z pokrywa się z kierunkiem prędkości rozchodzenia się fali

6.6. Na czym polega podwójne załamanie światła - polega na rozdzieleniu wiązki nie spolaryzowanej przez kryształ dwójłomny na dwa promienie wzajemnie prostopadłe spolaryzowane. Współczynnik załamanie jednego promienia przechodzącego przez taki kryształ spełnia prawo załamania i promień taki nazywa się promieniem zwyczajnym. Natomiast inny promień zwany nadzwyczajnym będzie załamywał się tak że współczynnik załamania światła dla niego funkcja kąta padania. Kryształ dwójłomny to kryształ anizotropowy który ma różne współczynniki załamania dla dwóch podstawowych kierunków polaryzacji względem kryształu

6.7. Kiedy światło odbite od powierzchni dielektryka jest całkowicie spolaryzowane

- Składowa pola elektrycznego prostopadła do płaszczyzny padania

- składowa pola elektrycznego równoległa do płaszczyzny padania

Światło odbite od powierzchni dielektryka jest całkowicie spolaryzowane gdy kąt

0x01 graphic
(kąt polaryzacji, kąt Breustera) czyli: 0x01 graphic
, 0x01 graphic

6.8. Jaka jest różnica pomiędzy światłem spolaryzowanym a nie spolaryzowanym - światło nie spolaryzowane rozchodzące się wdanym kierunku składa się z niezależnych ciągów fali w których płaszczyzna drgań zorientowane w sposób przypadkowy. Światło spolaryzowane składa się tylko z fal dla których kierunki drgań wektora elektrycznego E są równoległe do kierunku polaryzacji

7.1. Wymienić i zapisać prawa opisujące promieniowanie ciała doskonale czarnego

0x01 graphic
, 0x01 graphic
, h=6,625*10-24

7.2. Jak można sobie wyobrazić ciało doskonale czarne i jakie on musi spełniać warunki

7.3. Na czym polega efekt fotoelektryczny - polega na tym że promieniowanie o określonej długości fali padające na powierzchnie metalu wybija z niego elektrony. V0 napięcie hamujące nie pozwalające przemieścić się elektronom do drugiej elektrody, eV=Kmax energia kinetyczna najszybszych elektronów. Fotoelektrony nie potrzebują napięcia, są w stanie same przemieścić się od jednej do drugiej elektrody.

7.4. Napisać zasadę zachowania energii w efekcie fotoelektrycznym

Fotonowe równanie Einsteina hv=E0+Kmax gdzie v-energia fotonu; E- praca wyjścia elektronu; K -energia kinetyczna elektronu po opuszczeniu metalu

Jeden foton o energii hv dostarcza powierzchni metalu energie która zostaje zużyta na wyjście elektronu na powierzchnie metalu oraz na dostarczenie elektronowi energii kinetycznej. Zatem Kmax oznacza maksymalna energie jaką może mieć fotoelektron na zew powierzchni metalu

7.5.W jaki sposób można eksperymentalnie wyznaczyć stałą Plancka

7.6. Sformułować postulaty Bohra

7.7. Podać zależność promienia atomu i energii od liczby kwantowej 0x01 graphic
, 0x01 graphic
widmo energetyczne jest kwantowane

7.8. Sformułować zasadę odpowiedniości - fizyka kwantowa przechodzi w fizykę klasyczną przy dużych liczbach kwantowych

8.1. Co to są fale de Broglie - zakładamy że materie możemy opisać jako fale (fale materii= fale de broglie), teorie falową dla materii uzywamy zamiast korpuskularnej tylko w fizyce kwantowej, fale materii opisujemy wzorami E=mc2 i 0x01 graphic

8.2. Wykazać słuszność warunku kwantyzacji Bohra w oparciu o fale de Broglie

r- promień orbity elektronowej, 0x01 graphic
-droga którą przebiega elektron , 0x01 graphic
długość fali 0x01 graphic
jest tak dobrana by orbita o promieniu r zawierała całkowitą liczbę fal materii 0x01 graphic
, 0x01 graphic
, 0x01 graphic
, 0x01 graphic

8.3. Sformułować i skomentować zasadę nieoznaczoności Heisenberga

nie można jednocześnie zmierzyć z całkowitą dokładnością współrzędnych pędu cząsteczki. dlatego w mechanice falowej pozbawione jest sensu fizycznego pojęcie toru ruchu cząsteczki. iloczyn dokładności określenia pędu i położenia jest stały 0x01 graphic
, 0x01 graphic
, 0x01 graphic
. Analogiczny związek dla nieoznaczoności energii nieoznaczoności czasu 0x01 graphic
energie cząstki w danym stanie można wyznaczyć tym dokładniej im dłużej ona w danym stanie pozostaje. Masa kwantowa poruszająca się w przestrzeni 0x01 graphic

8.4. Sformułować i skomentować pojęcie funkcji falowej Schrondingera

Funkcja falowa 0x01 graphic
jest miara zaburzenia falowego fal materii. Jest to funkcja matematyczna nie mająca sensu fizycznego. Sens fizyczny ma kwant tej funkcji który jest wielkością proporcjonalną do prawdopodobieństwa znalezienia cząstki w objętości V 0x01 graphic
- mamy pewność że elektron opisywanej funkcji 0x01 graphic
jest w objętości V

8.5. Zapisać i skomentować równanie Schrondingera w postaci ogólnej

0x01 graphic
, operator Ek+ operator Ep= operator Ec

Nie da się rozwiązać równania Schrondingera bo nie ma umiemy nic powiedzieć np. o u. Musimy założyć warunki fizyczne.

8.6. Zdefiniować cząstkę swobodną podać jakie posiada widmo energetyczne

Cząstka jest swobodna jeżeli jej energia potencjalna równa się zeru U=0, energia cząstki swobodnej 0x01 graphic
gdzie k jest dowolne to E tez dowolne czyli widmo jest ciągłe

8.7. Podać wnioski wynikające z rozwiązania równania Schrondingera dla atomu wodoru

8.8. Wymienić liczby kwantowe i podąć ich sens fizyczny

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic

0x01 graphic



Wyszukiwarka

Podobne podstrony:
FIZA EGZAM GRUPA 1
Fiza egzam, PYTANIA I ODPOWIEDZI, Zestaw I
FIZA EGZAM, Geologia UAM egzaminy rok I
fiza egzam spis tresci
Fiza egzam, 1, 9
Fiza egzam, zasady dynamiki2, 1
Fiza egzam, Zakaz Pauliego, Zakaz Pauliego
Fiza egzam, 3
FIZA EGZAM GRUPA 1
fiza egzam
FIZA EGZAM GRUPA 1
fiza
opracowania egzam monka (2)
sila termoelektryczna, Transport i Logistyka (AM) 1 (semestr I), Fizyka, fiza laborki (rozwiązania),

więcej podobnych podstron